Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Neurosci ; 43(21): 3949-3969, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37037606

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with highly heritable heterogeneity. Mutations of CUB and sushi multiple domains 3 (CSMD3) gene have been reported in individuals with ASD. However, the underlying mechanisms of CSMD3 for the onset of ASD remain unexplored. Here, using male CSMD3 knock-out (CSMD3 -/-) mice, we found that genetic deletion of CSMD3 produced core autistic-like symptoms (social interaction deficits, restricted interests, and repetitive and stereotyped behaviors) and motor dysfunction in mice, indicating that the CSMD3 gene can be considered as a candidate for ASD. Moreover, we discovered that the ablation of CSMD3 in mice led to abnormal cerebellar Purkinje cell (PC) morphology in Crus I/II lobules, including aberrant developmental dendritogenesis and spinogenesis of PCs. Furthermore, combining in vivo fiber photometry calcium imaging and ex vivo electrophysiological recordings, we showed that the CSMD3 -/- mice exhibited an increased neuronal activity (calcium fluorescence signals) in PCs of Crus I/II lobules in response to movement activity, as well as an enhanced intrinsic excitability of PCs and an increase of excitatory rather than inhibitory synaptic input to the PCs, and an impaired long-term depression at the parallel fiber-PC synapse. These results suggest that CSMD3 plays an important role in the development of cerebellar PCs. Loss of CSMD3 causes abnormal PC morphology and dysfunction in the cerebellum, which may underlie the pathogenesis of motor deficits and core autistic-like symptoms in CSMD3 -/- mice. Our findings provide novel insight into the pathophysiological mechanisms by which CSMD3 mutations cause impairments in cerebellar function that may contribute to ASD.SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) is a neurodevelopmental disorder with highly heritable heterogeneity. Advances in genomic analysis have contributed to numerous candidate genes for the risk of ASD. Recently, a novel giant gene CSMD3 encoding a protein with CUB and sushi multiple domains (CSMDs) has been identified as a candidate gene for ASD. However, the underlying mechanisms of CSMD3 for the onset of ASD remain largely unknown. Here, we unravel that loss of CSMD3 results in abnormal morphology, increased intrinsic excitabilities, and impaired synaptic plasticity in cerebellar PCs, subsequently leading to motor deficits and ASD-like behaviors in mice. These results provide novel insight into the pathophysiological mechanisms by which CSMD3 mutations cause impairments in cerebellar function that may contribute to ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastornos Motores , Animales , Masculino , Ratones , Calcio/metabolismo , Cerebelo/fisiología , Ratones Noqueados , Trastornos Motores/genética , Trastornos Motores/metabolismo , Células de Purkinje/fisiología
2.
J Neurosci ; 41(34): 7278-7299, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34272314

RESUMEN

Comorbid anxiety and depressive symptoms in chronic pain are a common health problem, but the underlying mechanisms remain unclear. Previously, we have demonstrated that sensitization of the CeA neurons via decreased GABAergic inhibition contributes to anxiety-like behaviors in neuropathic pain rats. In this study, by using male Sprague Dawley rats, we reported that the CeA plays a key role in processing both sensory and negative emotional-affective components of neuropathic pain. Bilateral electrolytic lesions of CeA, but not lateral/basolateral nucleus of the amygdala (LA/BLA), abrogated both pain hypersensitivity and aversive and depressive symptoms of neuropathic rats induced by spinal nerve ligation (SNL). Moreover, SNL rats showed structural and functional neuroplasticity manifested as reduced dendritic spines on the CeA neurons and enhanced LTD at the LA/BLA-CeA synapse. Disruption of GluA2-containing AMPAR trafficking and endocytosis from synapses using synthetic peptides, either pep2-EVKI or Tat-GluA2(3Y), restored the enhanced LTD at the LA/BLA-CeA synapse, and alleviated the mechanical allodynia and comorbid aversive and depressive symptoms in neuropathic rats, indicating that the endocytosis of GluA2-containing AMPARs from synapses is probably involved in the LTD at the LA/BLA-CeA synapse and the comorbid aversive and depressive symptoms in neuropathic pain in SNL-operated rats. These data provide a novel mechanism for elucidating comorbid aversive and depressive symptoms in neuropathic pain and highlight that structural and functional neuroplasticity in the amygdala may be important as a promising therapeutic target for comorbid negative emotional-affective disorders in chronic pain.SIGNIFICANCE STATEMENT Several studies have demonstrated the high comorbidity of negative affective disorders in patients with chronic pain. Understanding the affective aspects related to chronic pain may facilitate the development of novel therapies for more effective management. Here, we unravel that the CeA plays a key role in processing both sensory and negative emotional-affective components of neuropathic pain, and LTD at the amygdaloid LA/BLA-CeA synapse mediated by GluA2-containing AMPAR endocytosis underlies the comorbid aversive and depressive symptoms in neuropathic pain. This study provides a novel mechanism for elucidating comorbid aversive and depressive symptoms in neuropathic pain and highlights that structural and functional neuroplasticity in the amygdala may be important as a promising therapeutic target for comorbid negative emotional-affective disorders in chronic pain.


Asunto(s)
Ansiedad/fisiopatología , Reacción de Prevención/fisiología , Complejo Nuclear Basolateral/fisiopatología , Núcleo Amigdalino Central/fisiopatología , Depresión/fisiopatología , Hiperalgesia/fisiopatología , Depresión Sináptica a Largo Plazo/fisiología , Neuralgia/fisiopatología , Receptores AMPA/fisiología , Animales , Ansiedad/etiología , Comorbilidad , Condicionamiento Clásico , Depresión/etiología , Emociones , Endocitosis , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Conducta Exploratoria , Preferencias Alimentarias , Vectores Genéticos/administración & dosificación , Vectores Genéticos/farmacología , Lentivirus/genética , Ligadura , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Neuralgia/psicología , Técnicas de Placa-Clamp , Péptidos/farmacología , Ratas , Ratas Sprague-Dawley , Receptores AMPA/genética , Prueba de Desempeño de Rotación con Aceleración Constante , Método Simple Ciego , Nervios Espinales/lesiones , Natación
3.
Brain Behav Immun ; 100: 88-104, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34808295

RESUMEN

Prolonged postsurgical pain, which is associated with multiple risk factors in the perioperative stage, is a common medical and social problem worldwide. Suitable animal models should be established to elucidate the mechanisms underlying the perioperative prolonged postsurgical pain. In this study, standard and modified social defeat stress mice models, including chronic social defeat stress (CSDS), chronic nondiscriminatory social defeat stress (CNSDS) and vicarious social defeat stress (VSDS), were applied to explore the effect of perioperative social defeat stress on postsurgical pain in male and female mice. Our results showed that exposure to preoperative CSDS could induce prolonged postsurgical pain in defeated mice regardless of susceptibility or resilience differentiated by the social interaction test. Similar prolongation of incision-induced mechanical hypersensitivity was also observed in both sexes upon exposing to CNSDS or VSDS in the preoperative period. Moreover, we found that using the modified CNSDS or VSDS models at different recovery stages after surgery could still promote abnormal pain without sex differences. Further studies revealed the key role of spinal microglial activation in the stress-induced transition from acute to prolonged postoperative pain in male but not female mice. Together, these data indicate that perioperative social defeat stress is a vital risk factor for developing prolonged postoperative pain in both sexes, but the promotion of stress-induced prolonged postoperative pain by spinal microglial activation is sexually dimorphic in mice.


Asunto(s)
Microglía , Derrota Social , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Dolor Postoperatorio , Conducta Social , Columna Vertebral , Estrés Psicológico
4.
Mol Psychiatry ; 26(6): 2363-2379, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32317715

RESUMEN

FAM19A5/TAFA5 is a member of the family with sequence similarity 19 with unknown function in emotional and cognitive regulation. Here, we reported that FAM19A5 was highly expressed in the embryonic and postnatal mouse brain, especially in the hippocampus. Behaviorally, genetic deletion of Fam19a5 resulted in increased depressive-like behaviors and impaired hippocampus-dependent spatial memory. These behavioral alterations were associated with the decreased expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and N-methyl-D-aspartic acid receptors, as well as significantly reduced glutamate release and neuronal activity in the hippocampus. Subsequently, these changes led to the decreased density of dendritic spines. In recent years, the roles of chronic stress participating in the development of depression have become increasingly clear, but the mechanism remains to be elucidated. We found that the levels of FAM19A5 in plasma and hippocampus of chronic stress-treated mice were significantly decreased whereas overexpression of human FAM19A5 selectively in the hippocampus could attenuate chronic stress-induced depressive-like behaviors. Taken together, our results revealed for the first time that FAM19A5 plays a key role in the regulation of depression and spatial cognition in the hippocampus. Furthermore, our study provided a new mechanism for chronic stress-induced depression, and also provided a potential biomarker for the diagnosis and a new strategy for the treatment of depression.


Asunto(s)
Depresión , Memoria Espacial , Animales , Biomarcadores , Hipocampo , Ratones , Estrés Psicológico , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico
5.
Mol Pain ; 17: 17448069211023230, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34102915

RESUMEN

Cancer-associated pain is debilitating. However, the mechanism underlying cancer-induced spontaneous pain and evoked pain remains unclear. Here, using behavioral tests with immunofluorescent staining, overexpression, and knockdown of TRESK methods, we found an extensive distribution of TRESK potassium channel on both CGRP+ and IB4+ nerve fibers in the hindpaw skin, on CGRP+ nerve fibers in the tibial periosteum which lacks IB4+ fibers innervation, and on CGRP+ and IB4+ dorsal root ganglion (DRG) neurons in rats. Moreover, we found a decreased expression of TRESK in the corresponding nerve fibers within the hindpaw skin, the tibial periosteum and the DRG neurons in bone cancer rats. Overexpression of TRESK in DRG neurons attenuated both cancer-induced spontaneous pain (partly reflect skeletal pain) and evoked pain (reflect cutaneous pain) in tumor-bearing rats, in which the relief of evoked pain is time delayed than spontaneous pain. In contrast, knockdown of TRESK in DRG neurons produced both spontaneous pain and evoked pain in naïve rats. These results suggested that the differential distribution and decreased expression of TRESK in the periosteum and skin, which is attributed to the lack of IB4+ fibers innervation within the periosteum of the tibia, probably contribute to the behavioral divergence of cancer-induced spontaneous pain and evoked pain in bone cancer rats. Thus, the assessment of spontaneous pain and evoked pain should be accomplished simultaneously when evaluating the effect of some novel analgesics in animal models. Also, this study provides solid evidence for the role of peripheral TRESK in both cancer-induced spontaneous pain and evoked cutaneous pain.


Asunto(s)
Neoplasias Óseas , Canales de Potasio , Animales , Neoplasias Óseas/complicaciones , Ganglios Espinales , Dolor/complicaciones , Ratas , Ratas Sprague-Dawley
6.
Int J Mol Sci ; 21(18)2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906633

RESUMEN

Neuropathic pain is more complex and severely affects the quality of patients' life. However, the therapeutic strategy for neuropathic pain in the clinic is still limited. Previously we have reported that electroacupuncture (EA) has an attenuating effect on neuropathic pain induced by spared nerve injury (SNI), but its potential mechanisms remain to be further elucidated. In this study, we designed to determine whether BDNF/TrκB signaling cascade in the spinal cord is involved in the inhibitory effect of 2 Hz EA on neuropathic pain in SNI rats. The paw withdrawal threshold (PWT) of rats was used to detect SNI-induced mechanical hypersensitivity. The expression of BDNF/TrκB cascade in the spinal cord was evaluated by qRT-PCR and Western blot assay. The C-fiber-evoked discharges of wide dynamic range (WDR) neurons in spinal dorsal horn were applied to indicate the noxious response of WDR neurons. The results showed that 2 Hz EA significantly down-regulated the levels of BDNF and TrκB mRNA and protein expression in the spinal cord of SNI rats, along with ameliorating mechanical hypersensitivity. In addition, intrathecal injection of 100 ng BDNF, not only inhibited the analgesic effect of 2 Hz EA on pain hypersensitivity, but also reversed the decrease of BDNF and TrκB expression induced by 2 Hz EA. Moreover, 2 Hz EA obviously reduced the increase of C-fiber-evoked discharges of dorsal horn WDR neurons by SNI, but exogenous BDNF (100 ng) effectively reversed the inhibitory effect of 2 Hz EA on SNI rats, resulting in a remarkable improvement of excitability of dorsal horn WDR neurons in SNI rats. Taken together, these data suggested that 2 Hz EA alleviates mechanical hypersensitivity by blocking the spinal BDNF/TrκB signaling pathway-mediated central sensitization in SNI rats. Therefore, targeting BDNF/TrκB cascade in the spinal cord may be a potential mechanism of EA against neuropathic pain.


Asunto(s)
Electroacupuntura/métodos , Neuralgia/terapia , Células del Asta Posterior/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Masculino , Neuralgia/fisiopatología , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor trkB/metabolismo , Transducción de Señal/fisiología , Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Columna Vertebral
7.
Brain Behav Immun ; 80: 777-792, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31108168

RESUMEN

The progressive increase in the prevalence of obesity in the population can result in increased healthcare costs and demands. Recent studies have revealed a positive correlation between pain and obesity, although the underlying mechanisms still remain unknown. Here, we aimed to clarify the role of microglia in altered pain behaviors induced by high-fat diet (HFD) in male mice. We found that C57BL/6CR mice on HFD exhibited enhanced spinal microglial reaction (increased cell number and up-regulated expression of p-p38 and CD16/32), increased tumor necrosis factor-α (TNF-α) mRNA and brain-derived neurotrophic factor (BDNF) protein expression as well as a polarization of spinal microglial toward a pro-inflammatory phenotype. Moreover, we found that using PLX3397 (a selective colony-stimulating factor-1 receptor (CSF1R) kinase inhibitor) to eliminate microglia in HFD-induced obesity mice, inflammation in the spinal cord was rescued, as was abnormal pain hypersensitivity. Intrathecal injection of Mac-1-saporin (a saporin-conjugated anti-mac1 antibody) resulted in a decreased number of microglia and attenuated both mechanical allodynia and thermal hyperalgesia in HFD-fed mice. These results indicate that the pro-inflammatory functions of spinal microglia have a special relevance to abnormal pain hypersensitivity in HFD-induced obesity mice. In conclusion, our data suggest that HFD induces a classical reaction of microglia, characterized by an enhanced phosphorylation of p-38 and increased CD16/32 expression, which may in part contribute to increased nociceptive responses in HFD-induced obesity mice.


Asunto(s)
Microglía/metabolismo , Obesidad/metabolismo , Dolor/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/fisiología , Nociceptores/metabolismo , Médula Espinal/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
Neural Plast ; 2018: 6109723, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534151

RESUMEN

Mechanisms underlying remifentanil- (RF-) induced hyperalgesia, a phenomenon that is generally named as opioid-induced hyperalgesia (OIH), still remain elusive. The ventral posterior lateral nucleus (VPL) of the thalamus, a key relay station for the transmission of nociceptive information to the cerebral cortex, is activated by RF infusion. Electroacupuncture (EA) is an effective method for the treatment of pain. This study aimed to explore the role of VPL in the development of OIH and the effect of EA treatment on OIH in rats. RF was administered to rats via the tail vein for OIH induction. Paw withdrawal threshold (PWT) in response to mechanical stimuli and paw withdrawal latency (PWL) to thermal stimulation were tested in rats for the assessment of mechanical allodynia and thermal hyperalgesia, respectively. Spontaneous neuronal activity and local field potential (LFP) in VPL were recorded in freely moving rats using the in vivo multichannel recording technique. EA at 2 Hz frequency (pulse width 0.6 ms, 1-3 mA) was applied to the bilateral acupoints "Zusanli" (ST.36) and "Sanyinjiao" (SP.6) in rats. The results showed that both the PWT and PWL were significantly decreased after RF infusion to rats. Meanwhile, both the spontaneous neuronal firing rate and the theta band oscillation in VPL LFP were increased on day 3 post-RF infusion, indicating that the VPL may promote the development of RF-induced hyperalgesia by regulating the pain-related cortical activity. Moreover, 2 Hz-EA reversed the RF-induced decrease both in PWT and PWL of rats and also abrogated the RF-induced augmentation of the spontaneous neuronal activity and the power spectral density (PSD) of the theta band oscillation in VPL LFP. These results suggested that 2 Hz-EA attenuates the remifentanil-induced hyperalgesia via reducing the excitability of VPL neurons and the low-frequency (theta band) oscillation in VPL LFP.


Asunto(s)
Electroacupuntura/métodos , Hiperalgesia/inducido químicamente , Hiperalgesia/terapia , Núcleos Talámicos Laterales/fisiología , Remifentanilo/toxicidad , Núcleos Talámicos Ventrales/fisiología , Analgésicos Opioides/toxicidad , Animales , Hiperalgesia/fisiopatología , Núcleos Talámicos Laterales/efectos de los fármacos , Masculino , Dolor/inducido químicamente , Dolor/fisiopatología , Manejo del Dolor/métodos , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento , Núcleos Talámicos Ventrales/efectos de los fármacos
9.
Neurochem Res ; 42(10): 2712-2729, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28497343

RESUMEN

Previously we have demonstrated that brain-derived neurotrophic factor (BDNF) contributes to spinal long-term potentiation (LTP) and pain hypersensitivity through activation of GluN2B-containing N-methyl-D-aspartate (GluN2B-NMDA) receptors in rats following spinal nerve ligation (SNL). However, the molecular mechanisms by which BDNF impacts upon GluN2B-NMDA receptors and spinal LTP still remain unclear. In this study, we first documented that Fyn kinase-mediated phosphorylation of GluN2B subunit at tyrosine 1472 (pGluN2BY1472) was involved in BDNF-induced spinal LTP and pain hypersensitivity in intact rats. Second, we revealed a co-localization of Fyn and GluN2B-NMDA receptor in cultured dorsal horn neurons, implying that Fyn is a possible intermediate kinase linking BDNF/TrkB signaling with GluN2B-NMDA receptors in the spinal dorsal horn. Furthermore, we discovered that both SNL surgery and intrathecal active Fyn could induce an increased expression of dorsal horn pGluN2BY1472, as well as pain hypersensitivity in response to von Frey filaments stimuli; and more importantly, all these actions were effectively abrogated by pre-treatment with either PP2 or ifenprodil to respectively inhibit Fyn kinase and GluN2B-NMDA receptors activity. Moreover, we found that intrathecal administration of BDNF scavenger TrkB-Fc prior to SNL surgery, could prevent the nerve injury-induced increase of both pFynY420 and pGluN2BY1472 expression, and also inhibit the mechanical allodynia in neuropathic rats. Collectively, these results suggest that Fyn kinase-mediated pGluN2BY1472 is critical for BDNF-induced spinal LTP and pain hypersensitivity in SNL rats. Therefore, the BDNF-Fyn-GluN2B signaling cascade in the spinal dorsal horn may constitute a key mechanism underlying central sensitization and neuropathic pain development after peripheral nerve injury.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Potenciación a Largo Plazo/fisiología , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Hiperalgesia/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Neuralgia/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Fosforilación , Ratas Sprague-Dawley , Nervios Espinales/metabolismo , Tirosina/metabolismo
10.
Addict Biol ; 22(2): 435-445, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26692025

RESUMEN

The glutamatergic projection from the ventral subiculum of the hippocampus (vSUB) to the nucleus accumbens (NAc) shell has been reported to play a key role in drug-related behavior. The GluN2B subunit of N-methyl-D-aspartate receptors (NMDARs) in the NAc can be selectively elevated after the retrieval of drug-conditioned memory. However, whether the increased GluN2B-containing NMDARs (GluN2B-NMDARs) are able to alter the synaptic plasticity of the vSUB-NAc glutamatergic pathway remains unclear. Here, we found that the long-term potentiation (LTP) in the vSUB-NAc pathway was facilitated and the GluN2B subunit protein level was elevated in synaptoneurosomes of the NAc shell, but not in the core, following morphine-induced conditioned place preference (CPP) expression in rats. The facilitated LTP was prevented by the GluN2B-NMDAR antagonist RO25-6981. Also, a neurochemical disconnection following microinjection of RO25-6981 into the NAc shell, plus microinfusion of GABA agonist baclofen and muscimol into the contralateral vSUB prevented the expression of morphine-induced CPP. These findings suggest that the retrieval of drug-associated memory potentiated synaptic plasticity in the vSUB-NAc pathway, which was dependent on GluN2B-NMDAR activation in the NAc shell. These findings provide a new explanation for the mechanisms that underlie the morphine-associated-context memory. The GluN2B-NMDARs may be regarded as a potential target for erasing morphine-related memory.


Asunto(s)
Analgésicos Opioides/farmacología , Conducta Animal/efectos de los fármacos , Condicionamiento Operante , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Morfina/farmacología , Núcleo Accumbens/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Animales , Baclofeno/farmacología , Agonistas de Receptores de GABA-A/farmacología , Agonistas de Receptores GABA-B/farmacología , Hipocampo/metabolismo , Masculino , Memoria/efectos de los fármacos , Muscimol/farmacología , Núcleo Accumbens/metabolismo , Fenoles/farmacología , Piperidinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo
11.
Zhonghua Nan Ke Xue ; 23(1): 73-77, 2017 Jan.
Artículo en Zh | MEDLINE | ID: mdl-29658242

RESUMEN

OBJECTIVE: To study the effect of transcutaneous electrical acupoint stimulation (TEAS) in the treatment of asthenozoospermia. METHODS: We randomly divided 72 asthenozoospermia patients into a 2 Hz TEAS (n = 29), a 100 Hz TEAS (n = 20), and a blank control group (n = 23), those in the former two groups treated by 30 minutes of TEAS at 2 Hz and 100 Hz respectively, applied to the acupoints of bilateral Shenshu, left Zusanli, and Guanyuan, once a day for 60 days, while those in the blank control group left untreated. Using computer-assisted sperm analysis (CASA), we examined sperm concentration and motility as well as the percentages of grade a and grade a+b sperm in different groups of the patients. RESULTS: Compared with the baseline, 2 Hz TEAS significantly increased sperm motility (ï¼»12.76 ± 1.39ï¼½ vs ï¼»18.89 ± 2.46ï¼½%, P<0.05) and the percentage of grade a+b sperm ( ï¼»10.68 ± 1.22ï¼½ vs ï¼»16.32 ± 2.10ï¼½%, P<0.05) in the asthenozoospermic patients, while 100 Hz TEAS improved not only sperm motility (ï¼»12.32 ± 2.21ï¼½ vs ï¼»23.81 ± 3.42ï¼½%, P<0.01) and the percentage of grade a+b sperm (ï¼»10.45 ± 1.98ï¼½ vs ï¼»20.25 ± 2.82 ï¼½%, P<0.01), but also the percentage of grade a sperm (ï¼»6.44 ± 1.16ï¼½ vs ï¼»13.31 ± 2.30ï¼½%, P<0.05). Moreover, in comparison with the blank control group, 2 Hz TEAS also remarkably increased sperm motility (ï¼»9.57 ± 1.60ï¼½ vs ï¼»18.89 ± 2.46ï¼½%, P<0.05) and the percentage of grade a+b sperm (ï¼»7.81 ± 1.31ï¼½ vs ï¼»16.32 ± 2.10ï¼½%, P<0.05) in the asthenozoosperma patients, while 100 Hz TEAS improved not only sperm motility (ï¼»9.57 ± 1.60ï¼½ vs ï¼»23.81 ± 3.42ï¼½%, P<0.01) and the percentage of grade a+b sperm (ï¼»7.81 ± 1.31ï¼½ vs ï¼»20.25 ± 2.82ï¼½%, P<0.01) but also the percentage of grade a sperm (ï¼»4.87 ± 1.01ï¼½ vs ï¼»13.31 ± 2.30ï¼½%, P<0.01). Meanwhile, the rate of clinical effectiveness was significantly higher in the 100 Hz TEASthan in the blank control group either in intention-to-treat (ITT) analysis (100% vs 18.18%) orper-protocol (PP) analysis (90% vs 0%), and so was it than in the 2 Hz TEAS group based on the data of ITT (100% vs 33.33%). CONCLUSIONS: Both 2 Hz and 100 Hz TEAS are effective for the treatment of asthenozoospermia by improving sperm motility and vitality.


Asunto(s)
Puntos de Acupuntura , Astenozoospermia/terapia , Electroacupuntura/métodos , Motilidad Espermática , Humanos , Masculino , Recuento de Espermatozoides/métodos , Espermatozoides , Resultado del Tratamiento
12.
Neurobiol Dis ; 73: 428-51, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25447233

RESUMEN

The pathogenic mechanisms underlying neuropathic pain still remain largely unknown. In this study, we investigated whether spinal BDNF contributes to dorsal horn LTP induction and neuropathic pain development by activation of GluN2B-NMDA receptors via Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) phosphorylation in rats following spinal nerve ligation (SNL). We first demonstrated that spinal BDNF participates in the development of long-lasting hyperexcitability of dorsal horn WDR neurons (i.e. central sensitization) as well as pain allodynia in both intact and SNL rats. Second, we revealed that BDNF induces spinal LTP at C-fiber synapses via functional up-regulation of GluN2B-NMDA receptors in the spinal dorsal horn, and this BDNF-mediated LTP-like state is responsible for the occlusion of spinal LTP elicited by subsequent high-frequency electrical stimulation (HFS) of the sciatic nerve in SNL rats. Finally, we validated that BDNF-evoked SHP2 phosphorylation is required for subsequent GluN2B-NMDA receptors up-regulation and spinal LTP induction, and also for pain allodynia development. Blockade of SHP2 phosphorylation in the spinal dorsal horn using a potent SHP2 protein tyrosine phosphatase inhibitor NSC-87877, or knockdown of spinal SHP2 by intrathecal delivery of SHP2 siRNA, not only prevents BDNF-mediated GluN2B-NMDA receptors activation as well as spinal LTP induction and pain allodynia elicitation in intact rats, but also reduces the SNL-evoked GluN2B-NMDA receptors up-regulation and spinal LTP occlusion, and ultimately alleviates pain allodynia in neuropathic rats. Taken together, these results suggest that the BDNF/SHP2/GluN2B-NMDA signaling cascade plays a vital role in the development of central sensitization and neuropathic pain after peripheral nerve injury.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hiperalgesia/metabolismo , Potenciación a Largo Plazo/fisiología , Neuralgia/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/fisiología , Asta Dorsal de la Médula Espinal/metabolismo , Animales , Modelos Animales de Enfermedad , Hiperalgesia/tratamiento farmacológico , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Neuralgia/tratamiento farmacológico , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Quinolinas/farmacología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Nervios Espinales/lesiones
13.
Addict Biol ; 19(3): 380-91, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23163242

RESUMEN

A single exposure to drugs of abuse produces an NMDAR (N-methyl-D-aspartate receptor)-dependent synaptic potentiation at excitatory synapses of dopamine (DA) neurons in the ventral tegmental area (VTA) of the midbrain. All addictive drugs can increase DA concentrations in projection areas of the midbrain, including the hippocampus. Hippocampal DA release subsequently modulates hippocampal plasticity and drug-associated memories. Using in vivo electrophysiological recording techniques in anesthetized rats, we show that systemic injection of morphine induced hippocampal synaptic potentiation in a dose-dependent manner. Intra-VTA but not intra-hippocampus injection of morphine evoked this potentiation. Local hippocampal dopamine D1 receptors (D1R) are required in the morphine-induced synaptic potentiation and conditioned place preference (CPP). Moreover, both NMDAR activation in the VTA and VTA/hippocampus dopaminergic connections are essential for the morphine-evoked potentiation and CPP. These findings suggest that NMDAR signalings in the midbrain play a key role in regulating dopamine-mediated hippocampal synaptic plasticity underlying drug-induced associative memory.


Asunto(s)
Hipocampo/fisiología , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Potenciales Sinápticos/efectos de los fármacos , Área Tegmental Ventral/fisiología , Analgésicos Opioides/farmacología , Animales , Condicionamiento Psicológico/efectos de los fármacos , Dopamina/farmacología , Dopaminérgicos/farmacología , Relación Dosis-Respuesta a Droga , Potenciales Evocados/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Morfina/farmacología , Plasticidad Neuronal/efectos de los fármacos , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos
14.
CNS Neurosci Ther ; 30(4): e14703, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572816

RESUMEN

INTRODUCTION: Painful diabetic neuropathy (PDN) is a common complication of diabetes. Previous studies have implicated that mitochondrial dysfunction plays a role in the development of PDN, but its pathogenesis and mechanism have not been fully investigated. METHODS: In this study, we used high-fat diet/low-dose streptozotocin-induced rats as a model of type 2 diabetes mellitus. Behavioral testing, whole-cell patch-clamp recordings of dorsal root ganglion (DRG) neurons, and complex sensory nerve conduction velocity studies were used to assess peripheral neuropathy. Mitochondrial membrane potential (MMP), ATP, tissue reactive oxygen species, and transmission electron microscopy were used to evaluate the function and morphology of mitochondria in DRG. Real-time PCR, western blot, and immunofluorescence were performed to investigate the mechanism. RESULTS: We found that damaged mitochondria were accumulated and mitophagy was inhibited in PDN rats. The expression of sirtuin 3 (SIRT3), which is an NAD+-dependent deacetylase in mitochondria, was inhibited. Overexpression of SIRT3 in DRG neurons by intrathecally administered LV-SIRT3 lentivirus ameliorated neurological and mitochondrial dysfunctions. This was evidenced by the reversal of allodynia and nociceptor hyperexcitability, as well as the restoration of MMP and ATP levels. Overexpression of SIRT3 restored the inhibited mitophagy by activating the FoxO3a-PINK1-Parkin signaling pathway. The effects of SIRT3 overexpression, including the reversal of allodynia and nociceptor hyperexcitability, the improvement of impaired mitochondria and mitophagy, and the restoration of PINK1 and Parkin expression, were counteracted when FoxO3a siRNA was intrathecally injected. CONCLUSION: These results showed that SIRT3 overexpression ameliorates PDN via activation of FoxO3a-PINK1-Parkin-mediated mitophagy, suggesting that SIRT3 may become an encouraging therapeutic strategy for PDN.


Asunto(s)
Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Sirtuina 3 , Animales , Ratas , Adenosina Trifosfato/farmacología , Hiperalgesia , Mitofagia , Proteínas Quinasas/metabolismo , Transducción de Señal , Sirtuina 3/genética , Sirtuina 3/metabolismo , Ubiquitina-Proteína Ligasas/genética
15.
J Pain ; : 104495, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38354968

RESUMEN

Exacerbation of pain by chronic stress and comorbidity of pain with stress-related disorders such as depression and post-traumatic stress disorder, represent significant clinical challenges. Previously we have documented that chronic forced swim (FS) stress exacerbates neuropathic pain in spared nerve injury (SNI) rats, associated with an up-regulation of GluN2B-containing N-methyl-D-aspartate receptors (GluN2B-NMDARs) in the central nucleus of the amygdala (CeA). However, the molecular mechanisms underlying chronic FS stress (CFSS)-mediated exacerbation of pain sensitivity in SNI rats still remain unclear. In this study, we demonstrated that exposure of CFSS to rats activated the corticotropin-releasing factor (CRF)/CRF receptor type 1 (CRFR1) signaling in the CeA, which was shown to be necessary for CFSS-induced depressive-like symptoms in stressed rats, and as well, for CFSS-induced exacerbation of pain hypersensitivity in SNI rats exposed to chronic FS stress. Furthermore, we discovered that activation of CRF/CRFR1 signaling in the CeA upregulated the phosphorylation of GluN2B-NMDARs at tyrosine 1472 (pGluN2BY1472) in the synaptosomal fraction of CeA, which is highly correlated to the enhancement of synaptic GluN2B-NMDARs expression that has been observed in the CeA in CFSS-treated SNI rats. In addition, we revealed that activation of CRF/CRFR1 signaling in the CeA facilitated the CFSS-induced reinforcement of long-term potentiation as well as the enhancement of NMDAR-mediated excitatory postsynaptic currents in the basolateral amygdala (BLA)-CeA pathway in SNI rats. These findings suggest that activation of CRF/CRFR1 signaling in the CeA contributes to chronic stress-induced exacerbation of neuropathic pain by enhancing GluN2B-NMDAR-mediated synaptic plasticity in rats subjected to nerve injury. PERSPECTIVE: Our present study provides a novel mechanism for elucidating stress-induced hyperalgesia and highlights that the CRF/CRFR1 signaling and the GluN2B-NMDAR-mediated synaptic plasticity in the CeA may be important as potential therapeutic targets for chronic stress-induced pain exacerbation in human neuropathic pain. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author upon reasonable request.

16.
Mol Pain ; 8: 24, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22472208

RESUMEN

BACKGROUND: Primary and metastatic cancers that affect bone are frequently associated with severe and intractable pain. The mechanisms underlying the development of bone cancer pain are largely unknown. The aim of this study was to determine whether enhanced excitability of primary sensory neurons contributed to peripheral sensitization and tumor-induced hyperalgesia during cancer condition. In this study, using techniques of whole-cell patch-clamp recording associated with immunofluorescent staining, single-cell reverse-transcriptase PCR and behavioral test, we investigated whether the intrinsic membrane properties and the excitability of small-sized dorsal root ganglion (DRG) neurons altered in a rat model of bone cancer pain, and whether suppression of DRG neurons activity inhibited the bone cancer-induced pain. RESULTS: Our present study showed that implantation of MRMT-1 tumor cells into the tibial canal in rats produced significant mechanical and thermal hyperalgesia in the ipsilateral hind paw. Moreover, implantation of tumor cells provoked spontaneous discharges and tonic excitatory discharges evoked by a depolarizing current pulse in small-sized DRG neurons. In line with these findings, alterations in intrinsic membrane properties that reflect the enhanced neuronal excitability were observed in small DRG neurons in bone cancer rats, of which including: 1) depolarized resting membrane potential (RMP); 2) decreased input resistance (Rin); 3) a marked reduction in current threshold (CT) and voltage threshold (TP) of action potential (AP); 4) a dramatic decrease in amplitude, overshot, and duration of evoked action potentials as well as in amplitude and duration of afterhyperpolarization (AHP); and 5) a significant increase in the firing frequency of evoked action potentials. Here, the decreased AP threshold and increased firing frequency of evoked action potentials implicate the occurrence of hyperexcitability in small-sized DRG neurons in bone cancer rats. In addiotion, immunofluorescent staining and single-cell reverse-transcriptase PCR revealed that in isolated small DRG neurons, most neurons were IB4-positive, or expressed TRPV1 or CGRP, indicating that most recorded small DRG neurons were nociceptive neurons. Finally, using in vivo behavioral test, we found that blockade of DRG neurons activity by TTX inhibited the tumor-evoked mechanical allodynia and thermal hyperalgesia in bone cancer rats, implicating that the enhanced excitability of primary sensory neurons underlied the development of bone cancer pain. CONCLUSIONS: Our present results suggest that implantation of tumor cells into the tibial canal in rats induces an enhanced excitability of small-sized DRG neurons that is probably as results of alterations in intrinsic electrogenic properties of these neurons. Therefore, alterations in intrinsic membrane properties associated with the hyperexcitability of primary sensory neurons likely contribute to the peripheral sensitization and tumor-induced hyperalgesia under cancer condition.


Asunto(s)
Potenciales de Acción/fisiología , Neoplasias Óseas/metabolismo , Ganglios Espinales/citología , Neuronas/metabolismo , Animales , Femenino , Potenciales de la Membrana/fisiología , Ratas , Ratas Sprague-Dawley
17.
Front Neurol ; 13: 1018362, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388198

RESUMEN

Purpose: Parkinson's disease (PD) is a serious neurodegenerative disease affecting the elderly. In general, the locomotion deficit, which seriously affects the daily life of patients with PD, usually occurs at a later stage. The mask face symptom meanwhile progressively worsens. However, facial muscle disorders and changes involved in the freezing mask are unclear. Method: In this study, we recruited 35 patients with PD and 26 age- and sex-balanced controls to undergo phonation tests, while the built-in camera on the laptop recorded their facial expressions during the whole pronunciation process. Furthermore, FaceReader (version 7.0; Noldus Information Technology, Wageningen, Netherlands) was used to analyze changes in PD facial landmark movement and region movement. Results: The two-tailed Student's t-test showed that the changes in facial landmark movement among 49 landmarks were significantly lower in patients with PD than in the control group (P < 0.05). The data on facial region movement revealed that the eyes and upper lip of patients with PD differed significantly from those in the control group. Conclusion: Patients with PD had defects in facial landmark movement and regional movement when producing a single syllable, double syllable, and multiple syllables, which may be related to reduced facial expressions in patients with PD.

18.
iScience ; 25(9): 104936, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36072549

RESUMEN

Bone cancer pain is a common symptom in cancer patients with bone metastases and its underlying mechanisms remain unknown. Here, we report that Runx1 directly upregulates the transcriptional activity of P2X3 receptor (P2X3R) gene promoter in PC12 cells. Knocking down Runx1 in dorsal root ganglion (DRG) neurons suppresses the functional upregulation of P2X3R, attenuates neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats, whereas overexpressing Runx1 promotes P2X3R gene transcription in DRG neurons, induces neuronal hyperexcitability and pain hypersensitivity in naïve rats. Activation of GDNF-GFRα1-Ret-ERK signaling is required for Runx1-mediated P2X3R gene transcription in DRG neurons, and contributes to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. These findings indicate that the Runx1-mediated P2X3R gene transcription resulted from activation of GDNF-GFRα1-Ret-ERK signaling contributes to the sensitization of DRG neurons and pathogenesis of bone cancer pain. Our findings identify a potentially targetable mechanism that may cause bone metastasis-associated pain in cancer patients.

19.
Cell Res ; 32(6): 570-584, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35459935

RESUMEN

The decline of nicotinamide adenine dinucleotide (NAD) occurs in a variety of human pathologies including neurodegeneration. NAD-boosting agents can provide neuroprotective benefits. Here, we report the discovery and development of a class of potent activators (NATs) of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway. We obtained the crystal structure of NAMPT in complex with the NAT, which defined the allosteric action of NAT near the enzyme active site. The optimization of NAT further revealed the critical role of K189 residue in boosting NAMPT activity. NATs effectively increased intracellular levels of NAD and induced subsequent metabolic and transcriptional reprogramming. Importantly, NATs exhibited strong neuroprotective efficacy in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN) without any overt toxicity. These findings demonstrate the potential of NATs in the treatment of neurodegenerative diseases or conditions associated with NAD level decline.


Asunto(s)
NAD , Nicotinamida Fosforribosiltransferasa , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ratones , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicotinamida Fosforribosiltransferasa/uso terapéutico
20.
Mol Pain ; 7: 61, 2011 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-21854647

RESUMEN

Acupuncture and electro-acupuncture (EA) are now widely used to treat disorders like pain. We and others have shown previously that current frequency, intensity and treatment duration all significantly influence the anti-nociceptive effects of EA. There is evidence that stimulating sites also affect the antinociception, with EA applied ipsilaterally to the pain site being more effective under some pain states but contralateral EA under others. It was recently reported that local adenosine A1 receptors were responsible for ipsilateral acupuncture, but what mechanisms specifically mediate the anti-nociceptive effects of contralateral acupuncture or EA remains unclear. In the present study, we applied 100 Hz EA on the ipsi- or contra-lateral side of rats with inflammatory pain induced by intra-plantar injection of formalin, and reported distinct anti-nociceptive effects and mechanisms between them. Both ipsi- and contra-lateral EA reduced the paw lifting time in the second phase of the formalin test and attenuated formalin-induced conditioned place aversion. Contralateral EA had an additional effect of reducing paw licking time, suggesting a supraspinal mechanism. Lesions of rostral anterior cingulate cortex (ACC) completely abolished the anti-nociceptive effects of contra- but not ipsi-lateral EA. These findings were not lateralized effects, since injection of formalin into the left or right hind paws produced similar results. Overall, these results demonstrated distinct anti-nociceptive effects and mechanisms between different stimulating sides and implied the necessity of finding the best stimulating protocols for different pain states.


Asunto(s)
Electroacupuntura , Giro del Cíngulo/patología , Inflamación/complicaciones , Inflamación/patología , Dolor/complicaciones , Dolor/patología , Analgésicos/farmacología , Animales , Modelos Animales de Enfermedad , Formaldehído , Giro del Cíngulo/efectos de los fármacos , Nocicepción/efectos de los fármacos , Dolor/inducido químicamente , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda