Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Ecotoxicol Environ Saf ; 164: 164-171, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30107326

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are extremely incessant anthropogenic contaminants found in the environment, with dreadful risk to aquatic ecosystems. However, there is a limited amount of data concerning their impacts on freshwater organisms. 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether (BDE-209) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) are significant components of total PBDEs in water. The sublethal effects of BDE-47, BDE-209 and their binary mixtures on the aquatic organism Daphnia magna were investigated in acute and chronic exposure experiments. Immobilization and heartbeat were studied in daphnids after 48 h of exposure. Mortality rate, breed number, Cholinesterase (ChE), Glutathione S-transferases (GST) and Catalase (CAT) activities were evaluated after 21 days of exposure. The results showed that at 100 and 200 µg/L concentration of BDE-47, immobilization rate of daphnids were inhibited by 44.0 ±â€¯16.7% and 88.0 ±â€¯10.9%, respectively. The binary mixture of BDE-47 and BDE-209 had uncongenial effects on immobilization of D. magna under acute toxicity test. BDE-209 significantly increased the heartbeat rate of daphnids, which increased even further when combined with BDE-47. After 21 days of exposure, daphnids exposed to single BDE-47 were physiologically altered. The combination of BDE-47 with BDE-209 significantly decreased the mortality rate of daphnids. Irrespective of the concentration, higher numbers of offsprings were produced in the mixtures compared to BDE-47 treatment alone. ChE activities significantly (p < 0.05) decreased at concentrations of 2 and 4 µg/L in single BDE-47 treatment, while GST activity significantly (p < 0.05) decreased at 0.5 µg/L. CAT activities significantly increased with BDE-47 treatments in all the tested concentrations (p < 0.05). The mixtures significantly affect ChE (p < 0.05), GST (p < 0.05) and CAT activities (p < 0.05). The results illustrated that the toxicity of the mixture of PBDE congeners exposed to aquatic organisms may have antagonistic effects. The 21 days chronic test in this study suggests that acute toxicity tests, i.e. 48-h tests, using Daphnia may lead to underestimation of risks associated with PBDEs, especially, BDE-209. Hence, there is a necessity to re-examine PBDE congeners' environmental risk in aquatic organisms.


Asunto(s)
Biomarcadores/metabolismo , Daphnia/efectos de los fármacos , Éteres Difenilos Halogenados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/efectos de los fármacos , Organismos Acuáticos/metabolismo , Catalasa/metabolismo , Colinesterasas/metabolismo , Daphnia/metabolismo , Glutatión Transferasa/metabolismo , Éteres Difenilos Halogenados/análisis , Frecuencia Cardíaca/efectos de los fármacos , Concentración de Iones de Hidrógeno , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Crónica , Contaminantes Químicos del Agua/análisis
2.
Phytother Res ; 31(2): 202-264, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28093828

RESUMEN

Cancer is a serious health problem and the second leading cause of death around the globe. Present review is an attempt to provide utmost information based on ethno-pharmacological and toxicological aspects of anti-cancer plants of the world. A total of 276 articles published in English journals and containing maximum ethnomedicinal information were reviewed using several data sources such as; Google scholar, Web of Science, Scopus, PubMed and floras of different countries. A total of 199 anti-cancer plants were recorded in present review and results indicated that traditional medicines are mostly being use in developing countries for cancer treatment. Traditionally and scientifically skin and breast cancer types gained more focus. Seventy plants were reportedly analyzed for in-vitro activities while 32 plants were having in-vivo reports. Twenty nine pure compounds (mostly phenolic) were reportedly isolated from anti-cancer plants and tested against different cancer cell lines. Inspite having better efficiency of ethnomedicines as compared to synthetic drugs, several plants have also shown toxic effects on living system. Therefore, we invite researchers attention to carry out detailed ethno-pharmacological and toxicological studies on un-explored anti-cancer plants in order to provide reliable knowledge to the patients and develop novel anti-cancer drugs. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Antineoplásicos/uso terapéutico , Etnofarmacología/métodos , Medicina Tradicional/métodos , Neoplasias/tratamiento farmacológico , Fitoterapia/métodos , Humanos
3.
J Environ Sci (China) ; 25(9): 1936-46, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24520738

RESUMEN

The single and combinational effects of cadmium (Cd) and fluoranthene (FLT) on germination, growth and photosynthesis of soybean seedlings were investigated. Exposure to 5, 10, or 15 mg Cd/L or 1, 5, or 10 mg FLT/L individually or in combination significantly decreased germination vigor (3 days) and final germination rate of soybean seeds, except at 1 and 5 mg FLT/L. The results of two-way ANOVA analysis and the Bliss independence model showed that at lower concentrations of FLT (1 mg/L), the interaction between Cd and FLT on germination was antagonistic, whereas the interaction was synergistic when the concentration of FLT was 5 or 10 mg/L and the concentration of Cd was 15 mg/L. Growth, expressed as dry weight, length of shoot and root, leaf area, and photosynthesis, expressed as net photosynthetic rate, intercellular CO2 concentration, chlorophyll contents and fluorescence of soybean seedlings were also reduced by exposure to 5 or 10 mg Cd/L or 1 or 5 mg FLT/L, singly or jointly. Significant antagonistic effects of exposure to 5 or 10 mg Cd/L or 1 or 5 mg FLT/L on shoot growth and photosynthesis were observed, whereas synergy and antagonism of Cd and FLT were both observed for root growth.


Asunto(s)
Cadmio/farmacología , Fluorenos/farmacología , Germinación/efectos de los fármacos , Glycine max/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Clorofila/metabolismo , Fluorescencia , Glycine max/crecimiento & desarrollo , Glycine max/metabolismo
4.
Environ Sci Pollut Res Int ; 28(47): 67748-67763, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34259991

RESUMEN

Uncertainty regarding how subalpine forest ecosystems respond to tree harvesting hinders their sustainable management and conservation strategies. To investigate the impact of oak (Quercus aquifolioides Rehd. et Wils.) harvesting and stand recovery processes on soil microbial communities and understory vegetation on the eastern Tibetan Plateau, we sampled and quantified the microbial community structure and understory vegetation in three age classes (1 year, 10 years, and 20 years since tree logging) of harvested stands and an un-harvested reference (control) stand of subalpine oak forest. Our result showed logging significantly altered the edaphic properties (p < 0.001) and shifted microbial community structure (p < 0.05), increasing the abundances of the Actinobacteria and arbuscular mycorrhizal fungi (AMF) but decreasing fungi and general, gram-positive and gram-negative bacteria. Post-harvest evolution increased the biomass of understory vegetation and reshaped its community. Fungi (18:1ω7c, 18:1ω9c) and gram-negative bacteria (18:2ω7c, cy19:0) abundances changed significantly (p < 0.01) after harvesting and during stand recovery, suggesting their potential use as indicators for post-harvest oak recovery. Structural equation modeling (SEqM) revealed that, via litter, residue, and edaphic properties, the recovery process indirectly promoted microbe abundance while the overstory vegetation regrowth inhibited the plant community's biomass in the understory. Microbial communities only had a minor, direct effect on understory vegetation. Litter and edaphic factors played important roles in reshaping understory plant and soil microbial communities for post-harvest evolution.


Asunto(s)
Micorrizas , Quercus , Antibacterianos , Ecosistema , Bosques , Bacterias Gramnegativas , Bacterias Grampositivas , Suelo , Microbiología del Suelo , Tibet
5.
Ecol Evol ; 11(2): 931-941, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33520176

RESUMEN

Many studies reported biotic change along a continental warming gradient. However, the temporal and spatial change of tree diversity and their sensitivity to climate warming might differ from region to region. Understanding of the variation among studies with regard to the magnitude of such biotic changes is minimal, especially in montane ecosystems. Our aim is to better understand changes in spatial heterogeneity and temporal dynamics of mountain tree communities under climate warming over the past four decades. In 2017, we resurveyed and recorded all tree species from 107 long-term monitoring plots that were first studied between 1974 and 1976. These plots were located in montane forests in the Giant Panda National Park (GPNP), China. Our results showed that spatial differences were found in tree species diversity changes response to mean annual temperature change over the past four decades. Tree species richness increased significantly under climate warming in Minshan (MS) and Xiaoxiangling (XXL) with higher warming rate than Qionglai (QLS) and Liangshan (LS). The trees species diversity in MS and XXL were more sensitive to climatic warming. MS and XXL should receive priority protection in the next conservation plan of the GPNP. The GPNP should avoid taking a "one-size-fits-all" approach for diversity conservation due to spatial heterogeneity in plant community dynamics.

6.
Geohealth ; 4(12): e2020GH000274, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33344870

RESUMEN

Ecosystem degradation accompanied by soil erosion risk is caused by the interaction of many factors, including climate change and human activities. Therefore, before attempting the optimal form of ecological restoration, we must know the key factors responsible for soil erosion risk and determine their impacts on the ecosystem health. To test this approach, we conducted a case study in the Three Gorges Reservoir Area from 1980 to 2015, where extensive restoration (primarily afforestation) has been conducted. The results showed that climate was most important during Period I (1980 to 1984), and explained 84% of the variation in erosion. However, vegetation became equally important during Period II (1985 to 2006), when it accounted for 51% of the variation. Climate became as important as vegetation during Period III (2007 to 2015), when it accounted for 51% of the variation. The temporal variation in the dominant factors that controlled soil erosion risk suggests that the ecological effect of vegetation improvement resulting from ecological restoration in Three Gorges Reservoir Area has been gradually enhanced since the 1980s.

7.
Ecol Evol ; 10(1): 557-568, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31988741

RESUMEN

Understanding the relative importance of the factors driving the patterns of biodiversity is a key research topic in community ecology and biogeography. However, the main drivers of plant species diversity in montane forests are still not clear. In addition, most existing studies make no distinction between direct and indirect effects of environmental factors and spatial constraints on plant biodiversity. Using data from 107 montane forest plots in Sichuan Giant Panda habitat, China, we quantified the direct and indirect effects of abiotic environmental factors, spatial constraints, and plant functional traits on plant community diversity. Our results showed significant correlations between abiotic environmental factors and trees (r = .10, p value = .001), shrubs (r = .19, p value = .001), or overall plant diversity (r = .18, p value = .001) in montane forests. Spatial constraints also showed significant correlations with trees and shrubs. However, no significant correlations were found between functional traits and plant community diversity. Moreover, the diversity (richness and abundance) of shrubs, trees, and plant communities was directly affected by precipitation, latitude, and altitude. Mean annual temperature (MAT) had no direct effect on the richness of tree and plant communities. Further, MAT and precipitation indirectly affected plant communities via the tree canopy. The results revealed a stronger direct effect on montane plant diversity than indirect effect, suggesting that single-species models may be adequate for forecasting the impacts of climate factors in these communities. The shifting of tree canopy coverage might be a potential indicator for trends of plant diversity under climate change.

8.
Environ Sci Pollut Res Int ; 27(7): 7040-7052, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31883073

RESUMEN

Land use/land cover (LULC) changes impact the structure and functioning of ecosystems, which consequently influences the provisioning of a range of ecosystem services (ES). There is a growing consensus regarding the merit of integrating the evaluation of ES into regional policy planning. The Yangtze River is the world's third longest and supports more than 6% of its population. However, assessing the potential impacts of different resource management policies upon ES is complicated in the Yangtze basin. To remedy this, here we designed a scenario analysis-based approach that used remotely sensed data and GIS (geographic information system) to analyze the relationships between ES (i.e., water flow regulation, water purification) and policies envisioned to improve human welfare in the Chongqing municipality, in the upper reaches of the Three Gorges Reservoir Area (TGRA) in the Yangtze basin. This watershed area has high population density and suffers from severe flood hazard and critical pollution issues. The GEOMOD modeling technique was used to predict LULC changes according to policy planning alternatives, producing scenarios by 2050 for the TGRA watershed. The GIS-based ES model (InVEST model) was developed as a tool to inform the decision-making process with the intention of aligning conservation measures with economic development. We examine policy effectiveness by comparing three scenarios for 2050: scenario-1 maintains the current policy, with no considerations of ES; scenario-2 integrates ES into policy planning; and scenario-3 integrates ES into policy planning considering the needs of local people. Our scenario-based LULC change analysis showed that the land with large increases in water flow regulation (i.e., values ≤-3000 × 103 m3 km-2) were scattered over the entire study area, while phosphorus reduction (i.e., values ≤ -30 kg km-2) were located mainly along rivers in all scenarios. Scenario-2 and scenario-3 are based on policies aiming at enhancing ES provisioning; for these, the projected ecological risks of water pollution are significantly reduced (39.97% and 37.58%, respectively). Total net changes of the investigated ES under scenario-2 or scenario-3 were almost double that occurring under scenario-1. Although scenario-2 and scenario-3 showed a near-equal total net change, water purification under scenario-2 was the greatest relative to forest expansion. However, scenario-3 offered the best future environmental development scenario, as it accounted for the demand and supply characteristics of water yield and purification in different regions. The water purification service made the greatest contribution to positive and negative effects (26%-47% and -7%, respectively) on ES provisioning. Linking water purification service to policy planning would effectively improve the overall ES. These scenario forecasting results will help the Three Gorges Dam to gain more ecological benefits via improvements to water flow regulation and the effective alleviation of degraded water quality in heavily populated regions in the Yangtze basin.


Asunto(s)
Ecosistema , Ríos , China , Humanos , Ríos/química , Agua , Contaminación del Agua/análisis
9.
Ecol Evol ; 10(17): 9474-9485, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32953076

RESUMEN

Studying the pattern of species richness is crucial in understanding the diversity and distribution of organisms in the earth. Climate and human influences are the major driving factors that directly influence the large-scale distributions of plant species, including gymnosperms. Understanding how gymnosperms respond to climate, topography, and human-induced changes is useful in predicting the impacts of global change. Here, we attempt to evaluate how climatic and human-induced processes could affect the spatial richness patterns of gymnosperms in China. Initially, we divided a map of the country into grid cells of 50 × 50 km2 spatial resolution and plotted the geographical coordinate distribution occurrence of 236 native gymnosperm taxa. The gymnosperm taxa were separated into three response variables: (a) all species, (b) endemic species, and (c) nonendemic species, based on their distribution. The species richness patterns of these response variables to four predictor sets were also evaluated: (a) energy-water, (b) climatic seasonality, (c) habitat heterogeneity, and (d) human influences. We performed generalized linear models (GLMs) and variation partitioning analyses to determine the effect of predictors on spatial richness patterns. The results showed that the distribution pattern of species richness was highest in the southwestern mountainous area and Taiwan in China. We found a significant relationship between the predictor variable set and species richness pattern. Further, our findings provide evidence that climatic seasonality is the most important factor in explaining distinct fractions of variations in the species richness patterns of all studied response variables. Moreover, it was found that energy-water was the best predictor set to determine the richness pattern of all species and endemic species, while habitat heterogeneity has a better influence on nonendemic species. Therefore, we conclude that with the current climate fluctuations as a result of climate change and increasing human activities, gymnosperms might face a high risk of extinction.

10.
Ecol Evol ; 9(24): 14295-14316, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31938520

RESUMEN

Understanding the factors driving the Quaternary distribution of Abies in the Tibetan Plateau (TP) is crucial for biodiversity conservation and for predicting future anthropogenic impacts on ecosystems. Here, we collected Quaternary paleo-, palynological, and phylogeographical records from across the TP and applied ecological niche models (ENMs) to obtain a profound understanding of the different adaptation strategies and distributional changes in Abies trees in this unique area. We identified environmental variables affecting the different historical biogeographies of four related endemic Abies taxa and rebuilt their distribution patterns over different time periods, starting from the late Pleistocene. In addition, modeling and phylogeographic results were used to predict suitable refugia for Abies forrestii, A. forrestii var. georgei, A. fargesii var. faxoniana, and A. recurvata. We supplemented the ENMs by investigating pollen records and diversity patterns of cpDNA for them. The overall reconstructed distributions of these Abies taxa were dramatically different when the late Pleistocene was compared with the present. All Abies taxa gradually receded from the south toward the north in the last glacial maximum (LGM). The outcomes showed two well-differentiated distributions: A. fargesii var. faxoniana and A. recurvata occurred throughout the Longmen refuge, a temporary refuge for the LGM, while the other two Abies taxa were distributed throughout the Heqing refuge. Both the seasonality of precipitation and the mean temperature of the driest quarter played decisive roles in driving the distribution of A. fargesii var. faxoniana and A. recurvata, respectively; the annual temperature range was also a key variable that explained the distribution patterns of the other two Abies taxa. Different adaptation strategies of trees may thus explain the differing patterns of distribution over time at the TP revealed here for endemic Abies taxa.

11.
Front Plant Sci ; 8: 1561, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28955356

RESUMEN

Phoebe zhennan (Gold Phoebe) is a threatened tree species in China and a valuable and important source of wood and bioactive compounds used in medicine. Apart from anthropogenic disturbances, several biotic constraints currently restrict its growth and development. However, little attention has been given to building adaptive strategies for its conservation by examining its morphological and physio-biochemical responses to drought stress, and the role of fertilizers on these responses. A randomized experimental design was used to investigate the effects of two levels of irrigation (well-watered and drought-stressed) and phosphorous (P) fertilization treatment (with and without P) to assess the morphological and physio-biochemical responses of P. zhennan seedlings to drought stress. In addition, we evaluated whether P application could mitigate the negative impacts of drought on plant growth and metabolism. Drought stress had a significant negative effect on the growth and metabolic processes of P. zhennan. Despite this, reduced leaf area, limited stomatal conductance, reduced transpiration rate, increased water use efficiency, enhanced antioxidant enzymes activities, and osmolytes accumulation suggested that the species has good adaptive strategies for tolerating drought stress. Application of P had a significant positive effect on root biomass, signifying its improved water extracting capacity from the soil. Moreover, P fertilization significantly increased leaf relative water content, net photosynthetic rate, and maximal quantum efficiency of PSII under drought stress conditions. This may be attributable to several factors, such as enhanced root biomass, decreased malondialdehyde content, and the up-regulation of chloroplast pigments, osmolytes, and nitrogenous compounds. However, P application had only a slight or negligible effect on the growth and metabolism of well-watered plants. In conclusion, P. zhennan has a strong capability for drought resistance, while P application facilitates and improves drought tolerance mostly through physio-biochemical adjustments, regardless of water availability. It is imperative to explore the underlying metabolic mechanisms and effects of different levels of P fertilization on P. zhennan under drought conditions in order to design appropriate conservation and management strategies for this species, which is at risk of extinction.

12.
PLoS One ; 11(12): e0167037, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27911906

RESUMEN

Environmental pollution with heavy metals is a serious issue worldwide posing threats to humans, animals and plants and to the stability of overall ecosystem. Chromium (Cr) is one of most hazardous heavy metals with a high carcinogenic and recalcitrant nature. Aim of the present study was to select low-cost biosorbent using wheat straw and Eupatorium adenophorum through simple carbonization process, capable of removing Cr (VI) efficiently from wastewater. From studied plants a low cost adsorbent was prepared for removing Cr (VI) from aqueous solution following very simple carbonization method excluding activation process. Several factors such as pH, contact time, sorbent dosage and temperature were investigated for attaining ideal condition. For analysis of adsorption equilibrium isotherm data, Langmuir, Freundlich and Temkin models were used while pseudo-first-order, pseudo-second-order, external diffusion and intra-particle diffusion models were used for the analysis of kinetic data. The obtained results revealed that 99.9% of Cr (VI) removal was observed in the solution with a pH of 1.0. Among all the tested models Langmuir model fitted more closely according to the data obtained. Increase in adsorption capacity was observed with increasing temperature revealing endothermic nature of Cr (VI). The maximum Cr (VI) adsorption potential of E. adenophorum and wheat straw was 89.22 mg per 1 gram adsorbent at 308K. Kinetic data of absorption precisely followed pseudo-second-order model. Present study revealed highest potential of E. adenophorum and wheat straw for producing low cost adsorbent and to remove Cr (VI) from contaminated water.


Asunto(s)
Ageratina/crecimiento & desarrollo , Compuestos de Cromo/metabolismo , Modelos Biológicos , Aguas Residuales/microbiología , Microbiología del Agua , Contaminantes Químicos del Agua/metabolismo , Concentración de Iones de Hidrógeno , Triticum , Purificación del Agua/métodos
13.
Sci Rep ; 6: 37662, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27874081

RESUMEN

An agroforestry experiment was conducted that involved four planting systems: monoculture of the focal species Zanthoxylum bungeanum and mixed cultures of Z. bungeanum and Capsicum annuum, Z. bungeanum and Medicago sativa and Z. bungeanum and Glycine max. Soil microbial food web (microorganisms and nematodes) was investigated under manipulated extreme rainfall in the four planting systems to assess whether presence of neighbor species alleviated the magnitude of extreme rainfall on nutrient uptake of the focal species by increasing the stability of soil food web. Our results indicate that in the focal species and G. max mixed culture, leaf nitrogen contents of the focal species were higher than in the monoculture and in the other mixed cultures under extreme rainfall. This result was mainly due to the significant increase under extreme rainfall of G. max species root biomass, resulting in enhanced microbial resistance and subsequent net nitrogen mineralization rate and leaf nitrogen uptake for the focal species. Differences in functional traits of neighbors had additive effects and led to a marked divergence of soil food-web resistance and nutrient uptake of the focal species. Climate change can indirectly alleviate focal species via its influence on their neighbors.


Asunto(s)
Cadena Alimentaria , Plantas/microbiología , Lluvia , Microbiología del Suelo , Animales , Biomasa , Minerales/análisis , Nematodos/fisiología , Nitrógeno/análisis , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Plantas/parasitología , Suelo/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda