Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Mol Cancer ; 23(1): 188, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243032

RESUMEN

Triple negative breast cancer (TNBC) is a particularly lethal breast cancer (BC) subtype driven by cancer stem cells (CSCs) and an immunosuppressive microenvironment. Our study reveals that nucleus accumbens associated protein 1 (NAC1), a member of the BTB/POZ gene family, plays a crucial role in TNBC by maintaining tumor stemness and influencing myeloid-derived suppressor cells (MDSCs). High NAC1 expression correlates with worse TNBC prognosis. NAC1 knockdown reduced CSC markers and tumor cell proliferation, migration, and invasion. Additionally, NAC1 affects oncogenic pathways such as the CD44-JAK1-STAT3 axis and immunosuppressive signals (TGFß, IL-6). Intriguingly, the impact of NAC1 on tumor growth varies with the host immune status, showing diminished tumorigenicity in natural killer (NK) cell-competent mice but increased tumorigenicity in NK cell-deficient ones. This highlights the important role of the host immune system in TNBC progression. In addition, high NAC1 level in MDSCs also supports TNBC stemness. Together, this study implies NAC1 as a promising therapeutic target able to simultaneously eradicate CSCs and mitigate immune evasion.


Asunto(s)
Proliferación Celular , Células Supresoras de Origen Mieloide , Células Madre Neoplásicas , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Humanos , Animales , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Femenino , Ratones , Células Supresoras de Origen Mieloide/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral , Pronóstico , Movimiento Celular , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/inmunología , Proteínas de Neoplasias
2.
Scand J Immunol ; 99(5): e13362, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605563

RESUMEN

T cells contribute to the pathogenesis of atherosclerosis. However, the presence and function of granulocyte-macrophage-colony-stimulating factor (GM-CSF)-producing T helper (ThGM) cells in atherosclerosis development is unknown. This study aims to characterize the phenotype and function of ThGM cells in experimental atherosclerosis. Atherosclerosis was induced by feeding apolipoprotein E knockout (ApoE-/-) mice with a high-fat diet. Aortic ThGM cells were detected and sorted by flow cytometry. The effect of oxidized low-density lipoprotein (oxLDL) on ThGM cells and the impact of ThGM cells on macrophages were evaluated by flow cytometry, quantitative RT-PCR, oxLDL binding/uptake assay, immunoblotting and foam cell formation assay. We found that GM-CSF+IFN-γ- ThGM cells existed in atherosclerotic aortas. Live ThGM cells were enriched in aortic CD4+CCR6-CCR8-CXCR3-CCR10+ T cells. Aortic ThGM cells triggered the expression of interleukin-1ß (IL-1ß), tumour necrosis factor (TNF), interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2) in macrophages. Besides, aortic ThGM cells expressed higher CD69 than other T cells and bound to oxLDL. oxLDL suppressed the cytokine expression in ThGM cells probably via inhibiting the signal transducer and activator of transcription 5 (STAT5) signalling. Furthermore, oxLDL alleviated the effect of ThGM cells on inducing macrophages to produce pro-inflammatory cytokines and generate foam cells. The nuclear receptor subfamily 4 group A (NR4A) members NR4A1 and NR4A2 were involved in the suppressive effect of oxLDL on ThGM cells. Collectively, oxLDL suppressed the supportive effect of ThGM cells on pro-atherosclerotic macrophages.


Asunto(s)
Aterosclerosis , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Lipoproteínas LDL , Macrófagos , Linfocitos T Colaboradores-Inductores , Animales , Ratones , Aterosclerosis/genética , Citocinas/metabolismo , Células Espumosas/patología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Interleucina-6/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo
3.
J Med Virol ; 95(7): e28957, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37465969

RESUMEN

Nucleus accumbens-associated protein 1 (NAC1), a transcriptional cofactor, has been found to play important roles in regulating regulatory T cells, CD8+ T cells, and antitumor immunity, but little is known about its effects on T-cell memory. In this study, we found that NAC1 expression restricts memory formation of CD4+ T cells during viral infection. Analysis of CD4+ T cells from wild-type (WT) and NAC1-deficient (-/- ) mice showed that NAC1 is essential for T-cell metabolism, including glycolysis and oxidative phosphorylation, and supports CD4+ T-cell survival in vitro. We further demonstrated that a deficiency of NAC1 downregulates glycolysis and correlates with the AMPK-mTOR pathway and causes autophagy defective in CD4+ T cells. Loss of NAC1 reduced the expression of ROCK1 and the phosphorylation and stabilization of BECLIN1. However, a forced expression of ROCK1 in NAC1-/- CD4+ T cells restored autophagy and the activity of the AMPK-mTOR pathway. In animal experiments, adoptively transferred NAC1-/- CD4+ T cells or NAC1-/- mice challenged with VACV showed enhanced formation of VACV-specific CD4+ memory T cells compared to adoptively transferred WT CD4+ T cells or WT mice. This memory T-cell formation enhancement was abrogated by forcing expression of ROCK1. Our study reveals a novel role for NAC1 as a suppressor of CD4+ T-cell memory formation and suggests that targeting NAC1 could be a new approach to promoting memory CD4+ T-cell development, which is critical for an effective immune response against pathogens.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Linfocitos T CD8-positivos , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Linfocitos T CD4-Positivos , Supervivencia Celular , Memoria Inmunológica , Ratones Endogámicos C57BL , Serina-Treonina Quinasas TOR/metabolismo
4.
Immunol Cell Biol ; 99(4): 351-360, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33141986

RESUMEN

Over the past decade, autophagy has emerged as a critical regulatory mechanism of the immune system through critically controlling various aspects of T cell biology and determining the fate of different T cell subsets. Autophagy maintains T cell development and survival by regulating the degradation of organelles and apoptotic proteins. The autophagic process also impacts the formation of memory T cells. Alteration of autophagy in T cells may lead to a variety of pathological conditions such as inflammation, autoimmune diseases and cancer. In this review, we discuss how autophagy impacts T cell differentiation, survival and memory, and its implication in immunotherapy for various diseases.


Asunto(s)
Autofagia , Activación de Linfocitos , Diferenciación Celular , Inmunoterapia , Subgrupos de Linfocitos T
6.
Curr Diab Rep ; 19(10): 89, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31471667

RESUMEN

PURPOSE OF REVIEW: Type 1 diabetes (T1D) is an autoimmune disease in which the immune cells selectively destroy the pancreatic beta (ß) cells and results in the deficiency of insulin production. The optimal treatment strategy for T1D should be preventing of ß-cell destruction in the pancreas. The purpose of this review is to discuss the immunological therapeutic mechanisms that will help to understand the development and control of ß-cell destruction. The review also presents a novel method for development of autoantigen (Ag)-specific regulatory T cells (Tregs) for T1D immunotherapy. RECENT FINDINGS: Pancreatic-resident Tregs have the ability to dramatically suppress hyperactive immune cells. Islet cell transplantation is another attractive approach to replace the failed ß cells. Due to the limited source of islet cells, research is going on in the use of animal cells and adult stem cells that may be derived from the patient's own body to produce ß cells for transplantation. The mechanism behind the pancreatic ß-cell destruction is largely unknown. In this review, a novel approach for the generation of tissue-associated Tregs from stem cells is considered. The stem cell-derived tissue-associated Tregs have the ability to home to the damaged pancreas to prevent the destruction. The review also provides new insights on the mechanism on how these suppressive immune cells protect the pancreas from the destruction of autoimmune cells. A novel method to develop functional auto Ag-specific Tregs that are derived from induced pluripotent stem cells (iPSCs), i.e., iPSC-Tregs, is discussed. Adoptive transfer of the iPSC-Tregs can substantially suppress T1D development in a murine model.


Asunto(s)
Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/terapia , Inmunoterapia/métodos , Linfocitos T Reguladores/inmunología , Traslado Adoptivo/métodos , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Trasplante de Células Madre , Linfocitos T Reguladores/trasplante
7.
Eur J Immunol ; 43(7): 1914-24, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23616302

RESUMEN

Survivin, an inhibitor of apoptosis family molecule, has been proposed as a crucial intermediate in the signaling pathways leading to T-cell development, proliferation, and expansion. However, the importance of survivin to T-cell-driven inflammatory responses has not been demonstrated. Here, we show that survivin transgenic mice exhibit an increased antigen-driven Th2 lung inflammation and that constitutive expression of survivin reversed the defective lung inflammation even in the absence of OX40 costimulation. We found that OX40-deficient mice were compromised in generating Th2 cells, airway eosinophilia, and IgE responses. In contrast, OX40-deficient/survivin transgenic mice generated normal Th2 responses and exhibited strong lung inflammation. These results suggest that OX40 costimulation crucially engages survivin during antigen-mediated Th2 responses. These findings also promote the notion that OX40 costimulation regulates allergic responses or lung inflammation by targeting survivin thereby enhancing T-cell proliferation and resulting in more differentiated Th2 cells in the allergic inflammatory response.


Asunto(s)
Hipersensibilidad/inmunología , Proteínas Inhibidoras de la Apoptosis/inmunología , Neumonía/inmunología , Receptores OX40/inmunología , Proteínas Represoras/inmunología , Células Th2/inmunología , Animales , Diferenciación Celular/inmunología , Hipersensibilidad/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neumonía/metabolismo , Receptores OX40/deficiencia , Proteínas Represoras/metabolismo , Survivin , Células Th2/citología
8.
J Immunol ; 189(3): 1228-36, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22732595

RESUMEN

Regulatory T (Treg) cells are being used to treat autoimmunity and prevent organ rejection; however, Treg cell-based therapies have been hampered by the technical limitation in obtaining a high number of functional Treg cells. In this study, we show how to generate functional Treg cells from induced pluripotent stem (iPS) cells and to determine the potential role of such cells for Treg cell-based immunotherapy against autoimmunity in a therapeutic setting. Ligation of a Notch ligand and transduction of the gene Foxp3 induce iPS cells to differentiate into Treg cells. Expression of Foxp3 and coculture on Notch ligand-expressing stromal cells augment expression of CD3, TCR, CD4, CD25, and CTLA-4 on iPS cell-differentiated Treg cells, which are able to secrete TGF-ß and IL-10 both in vivo and in vitro. Importantly, adoptive transfer of iPS cell-derived Treg cells expressing large amounts of Foxp3 and Bcl-x(L) significantly suppresses host immune responses and reduces arthritis development within murine models. These data suggest that Notch signaling and Foxp3 regulate the development and function of Treg cells derived from iPS cells. Our results provide a novel approach for generating potentially therapeutic Treg cells for the treatment of autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes/prevención & control , Diferenciación Celular/inmunología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/inmunología , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Animales , Artritis Experimental/inmunología , Artritis Experimental/patología , Artritis Experimental/prevención & control , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Línea Celular , Células Cultivadas , Técnicas de Cocultivo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Células Madre Pluripotentes/patología , Linfocitos T Reguladores/trasplante
9.
Mol Med Rep ; 29(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38456535

RESUMEN

Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that the immunofluorescence data shown in Fig. 2G, the mitochondria­ and lysosome­stained images in Fig. 3C, the JC­1 staining images in Fig. 4C and the immunofluorescence data in Fig. 5G were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had either already been published elsewhere prior to the submission of this paper to Molecular Medicine Reports, or were under consideration for publication at around the same time. In view of the fact that certain of the abovementioned data had already apparently been published previously, the Editor of Molecular Medicine Reports has decided that this paper should be retracted from the Journal. After having been in contact with the authors, they agreed with the decision to retract the paper. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 17: 3722­3734, 2018; DOI: 10.3892/mmr.2018.8371].

10.
Biomedicines ; 11(8)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37626718

RESUMEN

Nucleus-accumbens-associated protein-1 (NAC1) is a cancer-related transcriptional factor encoded by the NACC1 gene, which is amplified and overexpressed in various human cancers and has been appreciated as one of the top potential cancer driver genes. NAC1 has therefore been explored as a potential therapeutic target for managing malignant tumors. Here, we show that NAC1 is a negative regulator of NF-κB signaling, and NAC1 depletion enhances the level of the nuclear NF-κB in human melanoma. Furthermore, the inhibition of NF-κB signaling significantly potentiates the antineoplastic activity of the NAC1 inhibition in both the cultured melanoma cells and xenograft tumors. This study identifies a novel NAC1-NF-κB signaling axis in melanoma, offering a promising new therapeutic option to treat melanoma.

11.
Pathogens ; 12(2)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36839596

RESUMEN

For the past three years, COVID-19 has become an increasing global health issue. Adaptive immune cells, especially T cells, have been extensively investigated in regard to SARS-CoV-2 infection. However, human health and T cell responses are also impacted by many other pathogens and chronic diseases. We have summarized T cell performance during SARS-CoV-2 coinfection with other viruses, bacteria, and parasites. Furthermore, we distinguished if those altered T cell statuses under coinfection would affect their clinical outcomes, such as symptom severity and hospitalization demand. T cell alteration in diabetes, asthma, and hypertension patients with SARS-CoV-2 infection was also investigated in our study. We have summarized whether changes in T cell response influence the clinical outcome during comorbidities.

12.
Biomedicines ; 11(4)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37189841

RESUMEN

Triple-negative breast cancer (TNBC), characterized by a deficiency in estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor2 (HER2), is among the most lethal subtypes of breast cancer (BC). Nevertheless, the molecular determinants that contribute to its malignant phenotypes such as tumor heterogeneity and therapy resistance, remain elusive. In this study, we sought to identify the stemness-associated genes involved in TNBC progression. Using bioinformatics approaches, we found 55 up- and 9 downregulated genes in TNBC. Out of the 55 upregulated genes, a 5 gene-signature (CDK1, EZH2, CCNB1, CCNA2, and AURKA) involved in cell regeneration was positively correlated with the status of tumor hypoxia and clustered with stemness-associated genes, as recognized by Parametric Gene Set Enrichment Analysis (PGSEA). Enhanced infiltration of immunosuppressive cells was also positively correlated with the expression of these five genes. Moreover, our experiments showed that depletion of the transcriptional co-factor nucleus accumbens-associated protein 1 (NAC1), which is highly expressed in TNBC, reduced the expression of these genes. Thus, the five genes signature identified by this study warrants further exploration as a potential new biomarker of TNBC heterogeneity/stemness characterized by high hypoxia, stemness enrichment, and immune-suppressive tumor microenvironment.

13.
Signal Transduct Target Ther ; 8(1): 415, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875468

RESUMEN

CD4+ T cells, particularly IL-17-secreting helper CD4+ T cells, play a central role in the inflammatory processes underlying autoimmune disorders. Eukaryotic Elongation Factor 2 Kinase (eEF2K) is pivotal in CD8+ T cells and has important implications in vascular dysfunction and inflammation-related diseases such as hypertension. However, its specific immunological role in CD4+ T cell activities and related inflammatory diseases remains elusive. Our investigation has uncovered that the deficiency of eEF2K disrupts the survival and proliferation of CD4+ T cells, impairs their ability to secrete cytokines. Notably, this dysregulation leads to heightened production of pro-inflammatory cytokine IL-17, fosters a pro-inflammatory microenvironment in the absence of eEF2K in CD4+ T cells. Furthermore, the absence of eEF2K in CD4+ T cells is linked to increased metabolic activity and mitochondrial bioenergetics. We have shown that eEF2K regulates mitochondrial function and CD4+ T cell activity through the upregulation of the transcription factor, signal transducer and activator of transcription 3 (STAT3). Crucially, the deficiency of eEF2K exacerbates the severity of inflammation-related diseases, including rheumatoid arthritis, multiple sclerosis, and ulcerative colitis. Strikingly, the use of C188-9, a small molecule targeting STAT3, mitigates colitis in a murine immunodeficiency model receiving eEF2K knockout (KO) CD4+ T cells. These findings emphasize the pivotal role of eEF2K in controlling the function and metabolism of CD4+ T cells and its indispensable involvement in inflammation-related diseases. Manipulating eEF2K represents a promising avenue for novel therapeutic approaches in the treatment of inflammation-related disorders.


Asunto(s)
Quinasa del Factor 2 de Elongación , Interleucina-17 , Ratones , Animales , Interleucina-17/genética , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Linfocitos T CD8-positivos/metabolismo , Inflamación/genética , Linfocitos T CD4-Positivos
14.
Int J Immunopathol Pharmacol ; 36: 20587384221076472, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35306921

RESUMEN

Objectives: Macrophages play a critical role in atherosclerosis by contributing to plaque development, local inflammation, and thrombosis. Elucidation of the molecular cascades in atherosclerotic macrophages is important for preventing and treating atherosclerosis. This study aims to deepen the understanding of the mechanisms that regulate the function of aorta macrophage in atherosclerosis. Methods: In the current study, the expression and function of ETS variant transcription factor 6 (ETV6) in aorta macrophages in a mouse atherosclerosis model. Aorta macrophages were enriched by flow cytometry. ETV6 expression was analyzed by quantitative RT-PCR. The role of ETV6 in macrophage-mediated pro-inflammatory response was evaluated both in vitro and in vivo after ETV6 silencing. Results: A remarkable elevation of ETV6 in aorta macrophages of atherosclerotic mice was observed. In addition, in vitro analysis indicated that oxidized low-density lipoprotein (oxLDL) up-regulated ETV6 in macrophages via the NF-κB pathway. ETV6 silencing suppressed oxLDL-induced expression of IL-1ß, IL-6, and TNF-α in macrophages in vitro. However, ETV6 silencing did not impact the uptake of either oxLDL or cholesterol by macrophages. Furthermore, ETV6 silencing suppressed oxLDL-induced activation of the NF-κB pathway in macrophages, as evidenced by less phosphorylation of IKKß and NF-κB p65, more cytoplasmic IκBα, and lower nuclear NF-κB p65. Moreover, ETV6 silencing inhibited the production of IL-1ß and TNF-α in aorta macrophages in vivo. Conclusion: ETV6 supports macrophage-mediated inflammation in atherosclerotic aortas. This is a novel mechanism regulating the pro-inflammatory activity of atherosclerotic macrophages.


Asunto(s)
Aterosclerosis , FN-kappa B , Proteínas Proto-Oncogénicas c-ets , Proteínas Represoras , Animales , Aterosclerosis/genética , Inflamación/genética , Inflamación/metabolismo , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacología , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteína ETS de Variante de Translocación 6
15.
Int J Immunopathol Pharmacol ; 36: 3946320221117933, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35932160

RESUMEN

OBJECTIVES: T helper 17 (Th17) cells are involved in the inflammatory response of atherosclerosis. However, their heterogeneity in the atherosclerotic aorta remains elusive. This study was designed to identify aortic Th17 subsets. METHODS: The surface markers and transcription factors of aortic interleukin-17A (IL-17A)-expressing T cells were determined by flow cytometry in an ApoE-deficient mouse atherosclerotic model. Viable aortic IL-17A-expressing T cell subsets were isolated by flow cytometry on the basis of surface markers, followed by characterizing their transcription factors by either flow cytometry or real-time RT-PCR. The effect of aortic IL-17A-expressing T cell subsets on aortic endothelial cells was determined in vitro. RESULTS: C-X-C Motif Chemokine Receptor 3 (CXCR3), interleukin-17 receptor E (IL-17RE), CD200, and C-C Motif Chemokine Receptor 4 (CCR4) marked three subsets of aortic IL-17A-expressing T cells: CXCR3+IL-17RElowCD200+CCR4- T cells expressing T-box protein expressed in T cells (T-bet) and interferon-gamma (IFN-γ), CXCR3+IL-17RElowCD200+CCR4+ T cells expressing T-bet but fewer IFN-γ, and CXCR3-IL-17REhighCD200+CCR4+ T cells expressing very low T-bet and no IFN-γ. Based on these markers, viable aortic Th17 cells, Th17.1 cells, and transitional Th17.1 cells were identified. Both Th17.1 cells and transitional Th17.1 cells were more proliferative than Th17 cells. Compared with Th17 cells, Th17.1 cells plus transitional Th17.1 cells induced higher expression of C-X-C motif chemokine ligand 1 (CXCL1), C-C motif chemokine ligand 2 (CCL2), C-X-C motif chemokine 5 (CXCL5), and granulocyte-macrophage colony-stimulating factor (GM-CSF) in aortic endothelial cells. CONCLUSION: IL-17A-expressing CD4+ T cells were heterogeneous in atherosclerotic aortas.


Asunto(s)
Aterosclerosis , Interleucina-17 , Animales , Aorta/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Ligandos , Ratones , Receptores de Quimiocina/metabolismo , Células Th17/metabolismo , Factores de Transcripción/metabolismo
16.
J Immunother Cancer ; 10(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36150745

RESUMEN

BACKGROUND: T cell-mediated antitumor immunity has a vital role in cancer prevention and treatment; however, the immune-suppressive tumor microenvironment (TME) constitutes a significant contributor to immune evasion that weakens antitumor immunity. Here, we explore the relationship between nucleus accumbens-associated protein-1 (NAC1), a nuclear factor of the BTB (broad-complex, Tramtrack, bric a brac)/POZ (Poxvirus, and Zinc finger) gene family, and the TME. METHODS: Adoptive cell transfer (ACT) of mouse or human tumor antigen (Ag)-specific CD8+ cytotoxic T lymphocytes (CTLs) was tested in an immunocompetent or immunodeficient mouse model of melanoma with or without expression of NAC1. The effects of NAC1 expression on immune evasion in tumor cells were assessed in vitro and in vivo. CRISPR/Cas9, glycolysis analysis, retroviral transduction, quantitative real-time PCR, flow cytometric analysis, immunoblotting, database analyses were used to screen the downstream target and underlying mechanism of NAC1 in tumor cells. RESULTS: Tumorous expression of NAC1 negatively impacts the CTL-mediated antitumor immunity via lactate dehydrogenase A (LDHA)-mediated suppressive TME. NAC1 positively regulated the expression of LDHA at the transcriptional level, which led to higher accumulation of lactic acid in the TME. This inhibited the cytokine production and induced exhaustion and apoptosis of CTLs, impairing their cell-killing ability. In the immunocompetent and immunodeficient mice, NAC1 depleted melanoma tumors grew significantly slower and had an elevated infiltration of tumor Ag-specific CTLs following ACT, compared with the control groups. CONCLUSIONS: Tumor expression of NAC1 contributes substantially to immune evasion through its regulatory role in LDHA expression and lactic acid production. Thus, therapeutic targeting of NAC1 warrants further exploration as a potential strategy to reinforce cancer immunotherapy, such as the ACT of CTLs.


Asunto(s)
Evasión Inmune , Lactato Deshidrogenasa 5 , Melanoma , Proteínas del Tejido Nervioso , Proteínas Represoras , Animales , Antígenos de Neoplasias , Citocinas , Humanos , Lactato Deshidrogenasa 5/metabolismo , Ácido Láctico , Melanoma/inmunología , Ratones , Ratones SCID , Proteínas de Neoplasias , Proteínas del Tejido Nervioso/genética , Proteínas Represoras/genética , Microambiente Tumoral
17.
Sci Adv ; 8(5): eabl9783, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35108044

RESUMEN

eEF-2K has important roles in stress responses and cellular metabolism. We report here a previously unappreciated but critical role of eEF-2K in regulating the fate and cytocidal activity of CD8+ T cells. CD8+ T cells from eEF-2K KO mice were more proliferative but had lower survival than their wild-type counterparts after their activation, followed by occurrence of premature senescence and exhaustion. eEF-2K KO CD8+ T cells were more metabolically active and showed hyperactivation of the Akt-mTOR-S6K pathway. Loss of eEF-2K substantially impaired the activity of CD8+ T cells. Furthermore, the antitumor efficacy and tumor infiltration of the CAR-CD8+ T cells lacking eEF-2K were notably reduced as compared to the control CAR-CD8+ T cells. Thus, eEF-2K is critically required for sustaining the viability and function of cytotoxic CD8+ T cells, and therapeutic augmentation of this kinase may be exploited as a novel approach to reinforcing CAR-T therapy against cancer.


Asunto(s)
Linfocitos T CD8-positivos , Quinasa del Factor 2 de Elongación/metabolismo , Neoplasias , Animales , Ratones , Neoplasias/terapia , Factores de Elongación de Péptidos
18.
Viruses ; 14(8)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-36016335

RESUMEN

Nucleus accumbens-associated protein 1 (NAC1) is a transcription co-factor that has been shown to possess multiple roles in stem cell and cancer biology. However, little is known about its roles in regulation of the immune system. In the current study, we observed that expression of NAC1 impacted the survival of CD8+ T cells in vitro. NAC1-/- CD8+ T cells displayed lower metabolism, including reduced glycolysis and oxidative phosphorylation. In vivo, compared with wild-type (WT) mice, NAC1-/- mice produced a lower response to vaccinia virus (VACV) infection, and viral antigen (Ag)-specific CD8+ T cells decreased more slowly. Additionally, we observed that the NAC1-/- mice demonstrated a stronger memory formation of viral Ag-specific CD8+ T cells post-viral infection. Mechanically, we identified that compared with WT CD8+ T cells, the Interferon Regulatory Factor 4 (IRF4), a key transcription factor in T cell development, was highly expressed in NAC1-/- CD8+ T cells, insinuating that IRF4 could be a critical regulatory target of NAC1 in the memory formation of CD8+ T cells. Our results indicate that NAC1 restrains the memory formation of CD8+ T cells by modulating IRF4, and targeting NAC1 may be exploited as a new approach to boosting CD8+ T cell memory.


Asunto(s)
Linfocitos T CD8-positivos , Virosis , Animales , Memoria Inmunológica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Virus Vaccinia , Virosis/metabolismo
19.
Sci Adv ; 8(26): eabo0183, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35767626

RESUMEN

We report here that nucleus accumbens-associated protein-1 (NAC1), a nuclear factor of the Broad-complex, Tramtrack, Bric-a-brac/poxvirus and zinc finger (BTB/POZ) gene family, is a negative regulator of FoxP3 in regulatory T cells (Tregs) and a critical determinant of immune tolerance. Phenotypically, NAC1-/- mice showed substantial tolerance to the induction of autoimmunity and generated a larger amount of CD4+ Tregs that exhibit a higher metabolic profile and immune-suppressive activity, increased acetylation and expression of FoxP3, and slower turnover of this transcription factor. Treatment of Tregs with the proinflammatory cytokines interleukin-1ß or tumor necrosis factor-α induced a robust up-regulation of NAC1 but evident down-regulation of FoxP3 as well as the acetylated FoxP3. These findings imply that NAC1 acts as a trigger of the immune response through destabilization of Tregs and suppression of tolerance induction, and targeting of NAC1 warrants further exploration as a potential tolerogenic strategy for treatment of autoimmune disorders.

20.
J Immunol ; 182(11): 6744-52, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19454669

RESUMEN

Costimulation regulates multiple cellular processes of T cells inducing proliferation, expansion, and survival. The molecular targets of costimulation might then be useful to augment T cell activities. Two defined targets of costimulatory signals in primary T cells are the anti-apoptotic bcl-2 family molecule Bcl-x(L), and survivin, an inhibitor of apoptosis family member that might regulate both cell division and survival. However, the relative importance of, and relationship between, these molecules in primary T cells is not clear. To understand whether they have overlapping or cooperative functions, we used retrovirus-mediated transduction to introduce Bcl-x(L) and survivin separately, or together linked by a 2A picornavirus self-cleaving peptide, into Ag-responding CD8(+) T cells. We found that CD8(+) effector T cells expressing both Bcl-x(L) and survivin strongly expanded at an early stage and had a long-term survival advantage over cells transduced with either molecule alone. In vivo, with response to tumor-expressed Ag following adoptive T cell transfer, Ag-reactive CD8(+) T cells expressing both Bcl-x(L) and survivin displayed greatly enhanced tumor protective activity compared with CD8(+) T cells expressing either molecule introduced separately. These results indicate that Bcl-x(L) and survivin can critically contribute in a cooperative, nonredundant manner to augment the accumulation and persistence of CD8(+) T cells following encounter with Ag. The data provide new insights into why costimulatory signals might need to be sustained over time and suggest a potential novel approach to augment cellular immunotherapy for cancer.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Proteínas Asociadas a Microtúbulos/fisiología , Neoplasias/terapia , Proteína bcl-X/fisiología , Animales , Antígenos , Proteínas Reguladoras de la Apoptosis/fisiología , Linfocitos T CD8-positivos/metabolismo , Reactivos de Enlaces Cruzados , Proteínas Inhibidoras de la Apoptosis , Activación de Linfocitos , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Represoras , Survivin , Transducción Genética , Proteína bcl-X/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda