Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Opt Express ; 32(3): 3266-3277, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297552

RESUMEN

Low-coherence tunable visible light sources have a wide range of applications in imaging, spectroscopy, medicine, and so on. Second harmonic generation (SHG) based on a superfluorescent fiber source (SFS) can produce high-brightness visible light while retaining most of the characteristics of superfluorescent sources, such as low coherence, low intensity noise and flexible tunability. However, due to the limitations in phase matching conditions, SHG based on SFS is difficult to reach an equilibrium between high efficiency and robustness of phase matching to temperature variation. In this paper, based on a spectral tunable SFS, we provide a comprehensive analysis, both experimental and theoretical, of the impact of wavelength, linewidth, and temperature on the output performance of SHG. Our findings indicate that broader linewidths adversely affect conversion efficiency, yet they enhance the capacity to withstand temperature variations and central wavelength detuning, which is an advantage that traditional SHG methods do not possess. This work may pave the way for utilizing low-coherence visible light in domains and extreme environments where robust output stability becomes imperative.

2.
Opt Lett ; 49(4): 830-833, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38359193

RESUMEN

In a fiber supercontinuum (SC) source, the Raman scattering effect plays a significant role in extending the spectrum into a longer wavelength. Here, by using a phosphorus-doped fiber with a broad Raman gain spectrum as the nonlinear medium, we demonstrate flat SC generation spanning from 850 to 2150 nm. Within the wavelength range of 1.1-2.0 µm, the spectral power density fluctuation is less than 7 dB. Compared to a similar SC source based on a germanium-doped fiber with narrower Raman gain spectrum, the wavelength span is 300 nm broader, and the spectral power density fluctuation is 5 dB lower. This work demonstrates the phosphorus-doped fiber's great advantage in spectrally flat SC generation, which is of great significance in many applications such as optical coherence tomography, absorption spectroscopy, and telecommunication.

3.
Opt Express ; 31(19): 30542-30549, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37710594

RESUMEN

Raman fiber laser (RFL) has been widely adopted in astronomy, optical sensing, imaging, and communication due to its unique advantages of flexible wavelength and broadband gain spectrum. Conventional RFLs are generally based on silica fiber. Here, we demonstrate that the phosphosilicate fiber has a broader Raman gain spectrum as compared to the common silica fiber, making it a better choice for broadband Raman conversion. By using the phosphosilicate fiber as gain medium, we propose and build a tunable RFL, and compare its operation bandwidth with a silica fiber-based RFL. The silica fiber-based RFL can operate within the Raman shift range of 4.9 THz (9.8-14.7 THz), whereas in the phosphosilicate fiber-based RFL, efficient lasing is achieved over the Raman shift range of 13.7 THz (3.5-17.2 THz). The operation bandwidths of the two RFLs are also calculated theoretically. The simulation results agree well with experimental data, where the operation bandwidth of the phosphosilicate fiber-based RFL is more than twice of that of the silica fiber-based RFL. This work reveals the phosphosilicate fiber's unique advantage in broadband Raman conversion, which has great potential in increasing the reach and capacity of optical communication systems.

4.
Opt Lett ; 47(5): 1109-1112, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35230303

RESUMEN

The random Raman fiber laser (RRFL) has attracted great attention due to its wide applications in optical telecommunication, sensing, and imaging. The quantum defect (QD), as the main source of thermal load in fiber lasers, could threaten the stability and reliability of the RRFL. Conventional RRFLs generally adopt silica fiber to provide Raman gain, and the QD exceeds 4%. In this letter, we propose and demonstrate a phosphosilicate-fiber-based low-QD RRFL. There is a strong boson peak located at the frequency shift of 3.65 THz in the phosphosilicate fiber we employed. By utilizing this boson peak to provide Raman gain, we demonstrated an 11.71 W temporally stable random Raman laser at 1080 nm under a pump wavelength of 1066 nm. The corresponding QD is 1.3%, less than one third of the QD of the common silica-fiber-based RRFL. Compared with the full-cavity low-QD Raman fiber laser, this cavity-less low-QD RRFL has lower and flatter noise in the high frequency area (>100 kHz). This work provides a reference for suppressing thermal-induced effects, such as thermal-induced mode instability, thermal noise, and even fiber fusing in RRFLs.

5.
Opt Express ; 29(4): 5516-5524, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33726087

RESUMEN

Multiwavelength fiber lasers, especially those operating at optical communication wavebands such as 1.3 µm and 1.5 µm wavebands, have huge demands in wavelength division multiplexing communications. In the past decade, multiwavelength fiber lasers operating at 1.5 µm waveband have been widely reported. Nevertheless, 1.3 µm waveband multiwavelength fiber laser is rarely studied due to the lack of proper gain mechanism. Random fiber laser (RFL), owing to its good temporal stability and flexible wavelength tunability, is a great candidate for multiwavelength generation. Here, we reported high power multiwavelength generation at 1.3 µm waveband in RFL for the first time. At first, we employed a section of 10 km G655C fiber to provide Raman gains, as a result of which, 1.07 W multiwavelength generation at 1.3 µm waveband with an optical to signal noise ratio of ∼33 dB is demonstrated. By tuning the pump wavelength from 1055 nm to 1070 nm, tunable multiwavelength output covering the range of 1300-1330 nm can be achieved. Furtherly, we realized 4.67 W multiwavelength generation at 1.3 µm waveband by shortening the fiber length to 4 km. To the best of our knowledge, this is the highest output power ever reported for multiwavelength fiber lasers.

6.
Opt Express ; 29(13): 19441-19449, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34266053

RESUMEN

The power scaling on all-fiberized Raman fiber oscillator with brightness enhancement (BE) based on multimode graded-index (GRIN) fiber is demonstrated. Thanks to beam cleanup of GRIN fiber itself and single-mode selection properties of the fiber Bragg gratings inscribed in the center of GRIN fiber, the efficient BE is realized. For the laser cavity with single OC FBG, continuous-wave power of 334 W with an M2 value of 2.8 and BE value of 5.6 were obtained at a wavelength of 1120 nm with an optical-to-optical efficiency of 49.6%. Furthermore, the cavity reflectivity is increased by employing two OC FBGs to scale the output power up to 443 W, while the corresponding M2 is 3.5 with BE of 4.2. To our best knowledge, it is the highest power in Raman oscillator based on GRIN fiber.

7.
Opt Lett ; 46(11): 2662-2665, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34061082

RESUMEN

Quantum defect (QD)-induced high thermal load in high-power fiber lasers can largely affect the conversion efficiency, pose a threat to the system security, and even prohibit the further power scaling. In this Letter, we investigate evolutions and influences of the reflectivity of the output coupler, the length of phosphosilicate fiber, and the pump bandwidth, and demonstrate a hundred-watt-level low-QD Raman fiber laser (RFL). The RFL enabled by the boson peak of phosphosilicate fiber achieves a maximum power of 100.9 W with a reduced QD down to 0.97%; the corresponding conversion efficiency reaches 69.8%. This Letter may offer not only an alternative scheme for a high-power, high-efficiency fiber laser, but also great potential on the suppression of thermal-induced effects such as thermal mode instability and the thermal lens effect.

8.
Opt Lett ; 46(14): 3432-3435, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34264231

RESUMEN

In this Letter, we demonstrate a high-power Raman fiber amplifier with excellent beam quality based on graded-index fiber. The Yb-doped fiber laser (YDFL) and bandwidth-tunable amplified spontaneous emission (ASE) source are employed as the pump source to compare the laser performance separately. When the ASE with a bandwidth of 8 nm is employed, a maximum power of 943 W at 1130 nm is achieved, which is twice that pumped by YDFL. The beam quality factor M2 at maximum output power is 1.6, with a brightness enhancement (BE) factor of 27. To the best of our knowledge, this is the best beam quality and BE factor based on pure Raman gain with output power of over 100 W.

9.
Opt Lett ; 46(17): 4220-4223, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34469978

RESUMEN

Due to the beam cleanup effect, brightness enhancement (BE) can be achieved in a Raman fiber amplifier (RFA) based on multimode (MM) graded-index (GRIN) fiber. In this Letter, a novel, to the best of our knowledge, diagnostic tool of mode decomposition (MD) based on a stochastic parallel gradient descent algorithm is demonstrated to observe the beam cleanup effect in a GRIN-fiber-based RFA for the first time, to our knowledge. During output power boosting up to 405 W at 1130 nm, the output beam quality factor M2 improves from 3.45 to 2.88, with a BE factor of 10.5. The MD results based on the near-field beam profiles from RFA indicate that the modal weight of the fundamental mode increases from 74.5% to 87%, confirming that the fundamental mode dominates with higher Raman gain. Moreover, the beam quality is found to be limited by the existence of a higher-order (Laguerre-Gaussian) LG10 mode, which is insensitive to the beam cleanup effect. The correlation coefficient reaches over 0.98 for all MD results. Thus, the accuracy of the MD method is high enough to provide further valuable insight into the physics of spatiotemporal beam dynamics in MM GRIN fiber.

10.
Opt Express ; 28(7): 10515-10523, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32225634

RESUMEN

Owing to the special power distribution property, a random distributed feedback Raman fiber laser can achieve a high power spectrally flexible output with a low power spectrally tuning device. Here, an all-fiberized linearly polarized dual-wavelength random distributed feedback Raman laser with wavelength, linewidth, and power ratio tunability is demonstrated. By adopting two watt-level bandwidth adjustable optical filters, a spectrum-manipulable dual-wavelength output with nearly a 10 W output power is achieved. The wavelength separation can be tuned from 2.5 to 13 nm, and the 3 dB linewidth of the output can be doubled by increasing the bandwidth of the optical filter. The power ratio of each laser line can be tuned from 0 to nearly 100% with the help of two variable optical attenuators. A maximum output power of 9.46 W is realized, with a polarization extinction ratio up to 20.5 dB. The proposed dual-wavelength fiber laser can be employed as a pump source in frequency tunable, bandwidth adjustable terahertz microwave generation, and mid-infrared optical parametric oscillators.

11.
Opt Express ; 28(8): 12395-12404, 2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32403737

RESUMEN

We comprehensively study the effects of temporal and spectral optimization on single-mode Raman fiber amplifiers. Amplified spontaneous emission sources and ytterbium-doped fiber lasers are employed as seed or pump lasers for comparison, and passive fibers are utilized as gain media. The influences of various parameters of the laser on 2nd order Raman threshold and maximum output power are investigated experimentally, including bandwidth, seed power, wavelength separation between pump and seed laser, and temporal stability. With the 190 m passive fiber, the output power increases from 99.5 W to 142.4 W, corresponding to 43.1% improvement through the optimization of seed laser power, pump wavelength and temporal performance of pump source in this amplifier, which has guidance on the establishment of high-power single-mode Raman fiber amplifiers.

12.
Opt Lett ; 45(15): 4180-4183, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32735253

RESUMEN

Four-wave mixing induced spectral broadening near the zero-dispersion wavelength (ZDW) of the fiber is a bottleneck factor that limits the further wavelength extending in cascaded random fiber lasers (RFLs). In this Letter, we successfully suppress the spectral broadening near the ZDW of the fiber in the cascaded RFL by simply combining two kinds of commercial telecom fibers with different ZDWs, G655C fiber with ZDW around 1.52 µm and G652D fiber with ZDW around 1.31 µm. As a result, an 8th order Stokes light component at 1721 nm with a maximum output power of 2.1 W and a spectral purity of 96.94% is realized in this telecom-fiber-based cascaded RFL. This work provides a reference of nonlinear effect management in fiber lasers as well as affords a cost-effective way with great potential of realizing high-power widely tunable fiber lasers.

13.
Opt Lett ; 45(7): 1786-1789, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32235999

RESUMEN

A flat-amplitude multi-wavelength random Raman fiber laser with broad spectral coverage and a high optical signal-to-noise ratio (OSNR) is challenging and of great interest. In this Letter, we theoretically and experimentally proved that broadband pumping can help realize a broader, flat-amplitude multi-wavelength random Raman fiber laser. The influence of pump bandwidth, tunability of the spectral envelope, and channel spacing are investigated. As a result, with a 40 nm pump bandwidth, a spectral coverage of 1116-1125 nm with 19 laser lines and 31 dB OSNR is achieved, and the standard deviation in the peak intensities of the central nine lines is ${\sim}{1}.{1}\;{\rm dBm}$∼1.1dBm. This technique can also be applied to the multi-wavelength Raman (or random Raman) fiber lasers at other wavelengths and provide a reference for multi-wavelength applications in sensing, communication, and optical component testing.

14.
Opt Express ; 27(16): 23095-23102, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31510591

RESUMEN

Phosphosilicate fiber has the inherent advantage of generating dual-wavelength output owing to the two Raman gain peaks at the frequency shifts of ∼13.2 THz (silica-related) and 39.9 THz (phosphorus-related), respectively. The frequency shift of 39.9 THz is often adopted to obtain long wavelength laser, while the control of Stokes light at 13.2 THz has attracted much attention currently. In this paper, a dual-wavelength random distributed feedback Raman fiber laser (RDFL) with over 100 nm wavelength interval and continuously tunable power proportion was presented based on phosphosilicate fiber for the first time. Through using the filtered amplified spontaneous emission (ASE) source as the pump source, the spectral purity of the Stokes light could be as high as 99.8%. By tuning two manual variable optical attenuators (VOAs), the power proportion of the silica-related Stokes light could range from ∼0% to 99.0%, and the maximum value is limited by the generation of second order Stokes light. Although the power handling capability of the VOA is merely 2 W, over 23 W total output power of the Stokes light was obtained thanks to the particular power distribution property of RDFL. This experiment demonstrates the potential to achieve a flexible high-power and high-spectral purity dual-wavelength RDFL output.

15.
Opt Express ; 27(20): 28800-28807, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31684624

RESUMEN

We demonstrate a tunable, high order cascaded random Raman fiber laser (RRFL) with high purity at 1.7 µm band by using a high power amplified spontaneous emission source (ASE) with both wavelength and linewidth tunability as pump source. The influence of the spectral bandwidth of the ASE source on the spectral purity of the output at 1.7 µm band is investigated. By adjusting the spectral bandwidth of the ASE source to the optimized 20 nm, output power >14 W with spectral purity up to 98.29% at 1715 nm is achieved. As far as we know, this is the highest spectral purity ever reported for a RRFL at 1.7 µm region. Furthermore, by adjusting the central wavelength of ASE source, the output of the RRFL can be tuned from 1695 to 1725 nm with >10 W output power. What's more, the spectral purity is above 92% over a tuning range from 1705 to 1725 nm.

16.
Appl Opt ; 58(35): 9728-9733, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31873575

RESUMEN

Cascaded random Raman fiber lasers (CRRFLs) with simple configuration and high spectral purity have become a great candidate for power scaling over the 1.1 µm-2 µm spectral band. Recently, CRRFLs with high spectral purity over 90% have been proposed by applying a highly temporal-stable pump source or a free-space short-pass filter, at the cost of increased system complexity. In this work, pumped directly by a Yb-doped fiber oscillator at 1080 nm, an all-fiberized and simplified CRRFL with a short-pass optical filter based on bending fiber and a thin-film wavelength division multiplexer is demonstrated. The transmission loss of the filter for 5th Stokes order at 1440 nm is up to 70 dB. Spectral purity over 92% for all the first four Stokes orders is achieved. The highest output power is 15 W for the 4th Stokes order at 1341 nm.

17.
Appl Opt ; 58(14): 3696-3702, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31158180

RESUMEN

In this paper, an all-fiberized transverse mode-switching method was proposed based on temperature control of few-mode (FM) fiber Bragg gratings (FBGs). Two types of fibers were selected to fabricate the FBG pair in order to match the reflection peaks of the desired mode. The temperature-dependence property of the FM FBGs has been utilized to tune the reflection spectra. Through temperature control, 20 W level output power was obtained when the output laser was switched between the LP11 mode and the LP01 mode in both an all-fiberized ytterbium-doped laser and a Raman laser, which is increased by ∼2 orders of magnitude compared with previous demonstrations (almost less than 100 mW).

18.
Opt Express ; 26(5): 6446-6455, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29529837

RESUMEN

Random fiber laser, as a kind of novel fiber laser that utilizes random distributed feedback as well as Raman gain, has become a research focus owing to its advantages of wavelength flexibility, modeless property and output stability. Herein, a tunable optical parametric oscillator (OPO) enabled by a random fiber laser is reported for the first time. By exploiting a tunable random fiber laser to pump the OPO, the central wavelength of idler light can be continuously tuned from 3977.34 to 4059.65 nm with stable temporal average output power. The maximal output power achieved is 2.07 W. So far as we know, this is the first demonstration of a continuous-wave tunable OPO pumped by a tunable random fiber laser, which could not only provide a new approach for achieving tunable mid-infrared (MIR) emission, but also extend the application scenarios of random fiber lasers.

19.
Opt Express ; 26(18): 22894-22903, 2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-30184946

RESUMEN

Random fiber laser based on Raman gain and random distributed feedback has drawn great attention in recent years. One of the most widely-studied fields is to improve the optical efficiency and the output power. However, the power scaling of a random fiber laser is instinctively restricted by the high order Stokes generation. In this manuscript, we propose a simple yet effective method, which employs a homemade all-fiber Lyot filter to manipulate the polarization dependent Raman gain, thus increasing the threshold of the 2nd-order Stokes wave and enhancing the maximum output power of the linearly polarized random fiber laser. Through reliable theoretical analysis, we optimize the design of the wavelength dependent Lyot filter. Moreover, the performance of the filter and the power scaling capability of the linearly polarized random fiber laser are investigated in detail. A proof-of-principle experiment is carried out by inserting the homemade Lyot filter into a half-opened random fiber laser. The experimental results indicate that the 2nd-order Stokes wave can be effectively suppressed, and the maximum output power of the 1st-order Stokes wave is significantly increased with a range of ~50% (from 43.6 to 63.2 W).

20.
Opt Lett ; 43(17): 4152-4155, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30160739

RESUMEN

Random distributed feedback Raman fiber laser is a new kind of light source that can be applied to generate a high-power laser. In this Letter, we report on a high-power, high-spectral-purity random Raman fiber laser based on tapered fiber, in which the four-wave mixing (FWM) effect has been sufficiently suppressed. By choosing an appropriate tapered fiber length, we achieve a maximum random laser output of 491 W, and the spectral purity can reach to as high as 94%. We carefully compare the influence of different tapered fiber lengths and splicing patterns on the FWM effect by the cutting-back method and lateral-offset splicing. The results show that the transverse modes dispersion is responsible for the appearance of FWM by compensating the phase mismatch. It is believed that a kilowatt-level random laser can be obtained by further optimizing the parameters of tapered fiber.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda