RESUMEN
Leukocyte cell-derived chemotaxin-2 (LECT2) is an important cytokine synthesized by liver. Significant research interest is stimulated by its crucial involvement in inflammatory response, immune regulation, disease occurrence and development. However, bibliometric study on LECT2 is lacking. In order to comprehend the function and operation of LECT2 in human illnesses, we examined pertinent studies on LECT2 investigation in the Web of Science database, followed by utilizing CiteSpace, VOSview, and Scimago Graphica for assessing the yearly quantity of papers, countries/regions involved, establishments, authors, publications, citations, and key terms. Then we summarized the current research hotspots in this field. Our study found that the literature related to LECT2 has a fluctuating upward trend. "Angiogenesis", "ALECT2", "diagnosis", and "biliary atresia" are the current investigative frontiers. Our findings indicated that liver diseases (e.g. liver fibrosis and hepatic cell carcinoma), systemic inflammatory disease, and amyloidosis are the current research focus of LECT2. The current LECT2 research outcomes are not exceptional. We hope to promote the scientific research of LECT2 and exploit its potential for clinical diagnosis and treatment of related diseases through a comprehensive bibliometric review.
Asunto(s)
Bibliometría , Péptidos y Proteínas de Señalización Intercelular , Humanos , Animales , Investigación Biomédica/tendenciasRESUMEN
Background: No effective drugs currently exist to cure Alzheimer's disease (AD) due to its complexity and the lack of understanding of the involved molecular signaling and pathways. The relationship between liver health and AD is now widely recognized. Still, molecular links and shared pathways between the liver and brain remain unclear, making the liver-brain axis in AD therapies a new area for exploration. However, bibliometric studies on this topic are lacking. Objective: This study aims to review the liver-brain axis in AD and identify future research hotspots and trends through bibliometric analysis. Methods: Articles and reviews related to AD and liver and its related diseases were searched in the Web of Science Core Collection (WoSCC) database up to 2024. Data were processed and visually analyzed using VOSviewer, CiteSpace, and Pajek. Results: We collected 1,777 articles on AD and liver and its related diseases from 2,517 institutions across 80 countries. Keyword cluster analysis identified 11 clusters, with 'insulin resistance,' 'amyloid-beta,' 'apolipoprotein-E,' 'oxidative stress,' and 'inflammation' appearing most frequently, and exhibiting strong total link strength. These results indicate that these topics have been the primary focus of research on the liver-brain axis in AD. Conclusions: This study is the first to comprehensively analyze the liver-brain axis in AD using bibliometric methods. The research results identify recent research frontiers and hotspots, aiding scholars in gaining a deeper understanding of the correlation between AD and the liver.