Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Plant J ; 113(5): 1021-1034, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36602036

RESUMEN

Saururus chinensis, an herbaceous magnoliid without perianth, represents a clade of early-diverging angiosperms that have gone through woodiness-herbaceousness transition and pollination obstacles: the characteristic white leaves underneath inflorescence during flowering time are considered a substitute for perianth to attract insect pollinators. Here, using the newly sequenced S. chinensis genome, we revisited the phylogenetic position of magnoliids within mesangiosperms, and recovered a sister relationship for magnoliids and Chloranthales. By considering differentially expressed genes, we identified candidate genes that are involved in the morphogenesis of the white leaves in S. chinensis. Among those genes, we verified - in a transgenic experiment with Arabidopsis - that increasing the expression of the "pseudo-etiolation in light" gene (ScPEL) can inhibit the biosynthesis of chlorophyll. ScPEL is thus likely responsible for the switches between green and white leaves, suggesting that changes in gene expression may underlie the evolution of pollination strategies. Despite being an herbaceous plant, S. chinensis still has vascular cambium and maintains the potential for secondary growth as a woody plant, because the necessary machinery, i.e., the entire gene set involved in lignin biosynthesis, is well preserved. However, similar expression levels of two key genes (CCR and CAD) between the stem and other tissues in the lignin biosynthesis pathway are possibly associated with the herbaceous nature of S. chinensis. In conclusion, the S. chinensis genome provides valuable insights into the adaptive evolution of pollination in Saururaceae and reveals a possible mechanism for the evolution of herbaceousness in magnoliids.


Asunto(s)
Arabidopsis , Magnoliopsida , Saururaceae , Filogenia , Polinización/genética , Lignina , Magnoliopsida/genética
2.
Bioorg Med Chem Lett ; 36: 127788, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33460739

RESUMEN

VEGF/VEGFR-2 signaling plays a critical part in tumor angiogenesis. Inhibition of this pathway has been considered as a promising approach for cancer treatment. In this work, a series of 6,7-dimethoxy-4-anilinoquinazoline derivatives bearing diarylamide moiety were designed, synthesized and evaluated as potent inhibitors of VEGFR-2 kinase. Their in vitro antiproliferation activities against two human cancer cell lines Hep-G2 and MCF-7 have also been determined. Among them, compound 14b exhibited the most potent inhibitory activity against VEGFR-2 with IC50 value of 0.016 ± 0.002 µM and it showed the most potent antiproliferative effect against Hep-G2 and MCF-7 with IC50 values at low-micromolar range. Molecular docking studies revealed that these compounds represented by the most potent compound 14b could bind well to the ATP-binding site of VEGFR-2, which suggested that compound 14b could be a potential anticancer agent targeting VEGFR-2.


Asunto(s)
Amidas/farmacología , Antineoplásicos/farmacología , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Amidas/síntesis química , Amidas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Quinazolinas/síntesis química , Quinazolinas/química , Relación Estructura-Actividad , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Mol Biol Evol ; 33(8): 2044-53, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27189569

RESUMEN

Nucleotide insertions/deletions are ubiquitous in eukaryotic genomes, and the resulting hemizygous (unpaired) DNA has significant, heritable effects on adjacent DNA. However, little is known about the genetic behavior of insertion DNA. Here, we describe a binary transgenic system to study the behavior of insertion DNA during meiosis. Transgenic Arabidopsis lines were generated to carry two different defective reporter genes on nonhomologous chromosomes, designated as "recipient" and "donor" lines. Double hemizygous plants (harboring unpaired DNA) were produced by crossing between the recipient and the donor, and double homozygous lines (harboring paired DNA) via self-pollination. The transfer of the donor's unmutated sequence to the recipient generated a functional ß-glucuronidase gene, which could be visualized by histochemical staining and corroborated by polymerase chain reaction amplification and sequencing. More than 673 million seedlings were screened, and the results showed that meiotic ectopic recombination in the hemizygous lines occurred at a frequency >6.49-fold higher than that in the homozygous lines. Gene conversion might have been exclusively or predominantly responsible for the gene correction events. The direct measurement of ectopic recombination events provided evidence that an insertion, in the absence of an allelic counterpart, could scan the entire genome for homologous counterparts with which to pair. Furthermore, the unpaired (hemizygous) architectures could accelerate ectopic recombination between itself and interchromosomal counterparts. We suggest that the ectopic recombination accelerated by hemizygous architectures may be a general mechanism for interchromosomal recombination through ubiquitously dispersed repeat sequences in plants, ultimately contributing to genetic renovation and eukaryotic evolution.


Asunto(s)
Arabidopsis/genética , ADN de Plantas/genética , Mutagénesis Insercional , Arabidopsis/metabolismo , Cromosomas , Intercambio Genético , Conversión Génica , Hemicigoto , Recombinación Homóloga , Homocigoto , Meiosis/genética , Plantas Modificadas Genéticamente , Recombinación Genética , Plantones
4.
Plant Physiol ; 170(4): 2095-109, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26839128

RESUMEN

Nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes make up the largest plant disease resistance gene family (R genes), with hundreds of copies occurring in individual angiosperm genomes. However, the expansion history of NBS-LRR genes during angiosperm evolution is largely unknown. By identifying more than 6,000 NBS-LRR genes in 22 representative angiosperms and reconstructing their phylogenies, we present a potential framework of NBS-LRR gene evolution in the angiosperm. Three anciently diverged NBS-LRR classes (TNLs, CNLs, and RNLs) were distinguished with unique exon-intron structures and DNA motif sequences. A total of seven ancient TNL, 14 CNL, and two RNL lineages were discovered in the ancestral angiosperm, from which all current NBS-LRR gene repertoires were evolved. A pattern of gradual expansion during the first 100 million years of evolution of the angiosperm clade was observed for CNLs. TNL numbers remained stable during this period but were eventually deleted in three divergent angiosperm lineages. We inferred that an intense expansion of both TNL and CNL genes started from the Cretaceous-Paleogene boundary. Because dramatic environmental changes and an explosion in fungal diversity occurred during this period, the observed expansions of R genes probably reflect convergent adaptive responses of various angiosperm families. An ancient whole-genome duplication event that occurred in an angiosperm ancestor resulted in two RNL lineages, which were conservatively evolved and acted as scaffold proteins for defense signal transduction. Overall, the reconstructed framework of angiosperm NBS-LRR gene evolution in this study may serve as a fundamental reference for better understanding angiosperm NBS-LRR genes.


Asunto(s)
Evolución Molecular , Genes de Plantas , Variación Genética , Magnoliopsida/genética , Proteínas NLR/genética , Arabidopsis/genética , Secuencia de Bases , Sitios de Unión , Exones/genética , Intrones/genética , Motivos de Nucleótidos/genética , Filogenia , Especificidad de la Especie
5.
Mol Genet Genomics ; 291(2): 739-52, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26563433

RESUMEN

Very long-chain fatty acids (VLCFAs) play an important role in the survival and development of plants, and VLCFA synthesis is regulated by ß-ketoacyl-CoA synthases (KCSs), which catalyze the condensation of an acyl-CoA with malonyl-CoA. Here, we present a genome-wide survey of the genes encoding these enzymes, KCS genes, in 28 species (26 genomes and two transcriptomes), which represents a large phylogenetic scale, and also reconstruct the evolutionary history of this gene family. KCS genes were initially single-copy genes in the green plant lineage; duplication resulted in five ancestral copies in land plants, forming five fundamental monophyletic groups in the phylogenetic tree. Subsequently, KCS genes duplicated to generate 11 genes of angiosperm origin, expanding up to 20-30 members in further-diverged angiosperm species. During this process, tandem duplications had only a small contribution, whereas polyploidy events and large-scale segmental duplications appear to be the main driving force. Accompanying this expansion were variations that led to the sub- and neofunctionalization of different members, resulting in specificity that is likely determined by the 3-D protein structure. Novel functions involved in other physiological processes emerged as well, though redundancy is also observed, largely among recent duplications. Conserved sites and variable sites of KCS proteins are also identified by statistical analysis. The variable sites are likely to be involved in the emergence of product specificity and catalytic power, and conserved sites are possibly responsible for the preservation of fundamental function.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/genética , Evolución Molecular , Familia de Multigenes/genética , Filogenia , Secuencia de Aminoácidos , Duplicación de Gen , Genoma de Planta , Magnoliopsida/genética , Poliploidía , Transcriptoma/genética
6.
J Integr Plant Biol ; 58(2): 165-77, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25926337

RESUMEN

Plant genomes harbor dozens to hundreds of nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes; however, the long-term evolutionary history of these resistance genes has not been fully understood. This study focuses on five Brassicaceae genomes and the Carica papaya genome to explore changes in NBS-LRR genes that have taken place in this Rosid II lineage during the past 72 million years. Various numbers of NBS-LRR genes were identified from Arabidopsis lyrata (198), A. thaliana (165), Brassica rapa (204), Capsella rubella (127), Thellungiella salsuginea (88), and C. papaya (51). In each genome, the identified NBS-LRR genes were found to be unevenly distributed among chromosomes and most of them were clustered together. Phylogenetic analysis revealed that, before and after Brassicaceae speciation events, both toll/interleukin-1 receptor-NBS-LRR (TNL) genes and non-toll/interleukin-1 receptor-NBS-LRR (nTNL) genes exhibited a pattern of first expansion and then contraction, suggesting that both subclasses of NBS-LRR genes were responding to pathogen pressures synchronically. Further, by examining the gain/loss of TNL and nTNL genes at different evolutionary nodes, this study revealed that both events often occurred more drastically in TNL genes. Finally, the phylogeny of nTNL genes suggested that this NBS-LRR subclass is composed of two separate ancient gene types: RPW8-NBS-LRR and Coiled-coil-NBS-LRR.


Asunto(s)
Brassicaceae/genética , Evolución Molecular , Genes de Plantas , Nucleótidos/metabolismo , Proteínas de Plantas/genética , Proteínas/genética , Sitios de Unión , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Duplicación de Gen , Sitios Genéticos , Proteínas Repetidas Ricas en Leucina , Funciones de Verosimilitud , Familia de Multigenes , Filogenia , Especificidad de la Especie , Sintenía/genética
7.
Plant Physiol ; 166(1): 217-34, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25052854

RESUMEN

Proper utilization of plant disease resistance genes requires a good understanding of their short- and long-term evolution. Here we present a comprehensive study of the long-term evolutionary history of nucleotide-binding site (NBS)-leucine-rich repeat (LRR) genes within and beyond the legume family. The small group of NBS-LRR genes with an amino-terminal RESISTANCE TO POWDERY MILDEW8 (RPW8)-like domain (referred to as RNL) was first revealed as a basal clade sister to both coiled-coil-NBS-LRR (CNL) and Toll/Interleukin1 receptor-NBS-LRR (TNL) clades. Using Arabidopsis (Arabidopsis thaliana) as an outgroup, this study explicitly recovered 31 ancestral NBS lineages (two RNL, 21 CNL, and eight TNL) that had existed in the rosid common ancestor and 119 ancestral lineages (nine RNL, 55 CNL, and 55 TNL) that had diverged in the legume common ancestor. It was shown that, during their evolution in the past 54 million years, approximately 94% (112 of 119) of the ancestral legume NBS lineages experienced deletions or significant expansions, while seven original lineages were maintained in a conservative manner. The NBS gene duplication pattern was further examined. The local tandem duplications dominated NBS gene gains in the total number of genes (more than 75%), which was not surprising. However, it was interesting from our study that ectopic duplications had created many novel NBS gene loci in individual legume genomes, which occurred at a significant frequency of 8% to 20% in different legume lineages. Finally, by surveying the legume microRNAs that can potentially regulate NBS genes, we found that the microRNA-NBS gene interaction also exhibited a gain-and-loss pattern during the legume evolution.


Asunto(s)
Evolución Molecular , Fabaceae/genética , Familia de Multigenes , Eliminación de Gen , Duplicación de Gen , Genoma de Planta , MicroARNs/metabolismo , Filogenia
8.
Bioorg Med Chem Lett ; 25(22): 5137-41, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26475519

RESUMEN

A series of hybrids derived from 4-anilinoquinazoline and hydroxamic acid were designed, synthesized, and evaluated as dual inhibitors of vascular endothelia growth factor receptor-2 (VEGFR-2) tyrosine kinase and histone deacetylase (HDAC). Most of these compounds exhibited potent HDAC inhibition and moderate VEGFR-2 inhibition. Among them, compound 6l exhibited the most potent inhibitory activities against VEGFR-2 (IC50=84 nM) and HDAC (IC50=2.8 nM). It also showed the most potent antiproliferative ability against MCF-7, a human breast cancer line, with IC50 of 1.2 µM. Docking simulation supported the initial pharmacophoric hypothesis and suggested a common mode of interaction of compound 6l at the active binding sites of VEGFR-2 and HDAC.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Antineoplásicos/síntesis química , Dominio Catalítico , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Histona Desacetilasas/síntesis química , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Quinazolinas/síntesis química , Relación Estructura-Actividad
9.
Bioorg Med Chem ; 22(17): 4735-44, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25082515

RESUMEN

Both c-Met and VEGFR-2 are important targets for the treatment of cancers. In this study, a series of N-(2-phenyl-1H-benzo[d]imidazol-5-yl)quinazolin-4-amine derivatives were designed and identified as dual c-Met and VEGFR-2 inhibitors. Among these compounds bearing quinazoline and benzimidazole fragments, compound 7j exhibited the most potent inhibitory activity against c-Met and VEGFR-2 with IC50 of 0.05µM and 0.02µM, respectively. It also showed the highest anticancer activity against the tested cancer cell lines with IC50 of 1.5µM against MCF-7 and 8.7µM against Hep-G2. Docking simulation supported the initial pharmacophoric hypothesis and suggested a common mode of interaction at the ATP-binding site of c-Met and VEGFR-2, which demonstrates that compound 7j is a potential agent for cancer therapy deserving further researching.


Asunto(s)
Antineoplásicos/farmacología , Bencimidazoles/química , Bencimidazoles/farmacología , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Quinazolinas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Bencimidazoles/síntesis química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-met/metabolismo , Quinazolinas/síntesis química , Quinazolinas/química , Relación Estructura-Actividad , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
10.
Sci China Life Sci ; 67(4): 803-816, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38087029

RESUMEN

Living fossils are evidence of long-term sustained ecological success. However, whether living fossils have little molecular changes remains poorly known, particularly in plants. Here, we have introduced a novel method that integrates phylogenomic, comparative genomic, and ecological niche modeling analyses to investigate the rate of molecular evolution of Eupteleaceae, a Cretaceous relict angiosperm family endemic to East Asia. We assembled a high-quality chromosome-level nuclear genome, and the chloroplast and mitochondrial genomes of a member of Eupteleaceae (Euptelea pleiosperma). Our results show that Eupteleaceae is most basal in Ranunculales, the earliest-diverging order in eudicots, and shares an ancient whole-genome duplication event with the other Ranunculales. We document that Eupteleaceae has the slowest rate of molecular changes in the observed angiosperms. The unusually low rate of molecular evolution of Eupteleaceae across all three independent inherited genomes and genes within each of the three genomes is in association with its conserved genome architecture, ancestral woody habit, and conserved niche requirements. Our findings reveal the evolution and adaptation of living fossil plants through large-scale environmental change and also provide new insights into early eudicot diversification.


Asunto(s)
Evolución Molecular , Magnoliopsida , Filogenia , Ranunculales , Genómica , Magnoliopsida/genética , Ecosistema , Fósiles
11.
Bioorg Med Chem Lett ; 23(14): 4235-8, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23731945

RESUMEN

Two series of thiazole derivatives containing amide skeleton were synthesized and developed as potent Escherichia coli ß-ketoacyl-(acyl-carrier-protein) synthase III (ecKAS III) inhibitors. All the 24 new synthesized compounds were assayed for antibacterial activity against the respective Gram-negative and Gram-positive bacterial strains, including E. coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. In which, 10 compounds with broad-spectrum antibacterial activities were further tested for their ecKAS III inhibitory activity. Last, we have successfully found that compound 4e showed both the promising broad antibacterial activity with MIC of 1.56-6.25µg/mL against the representative bacterial stains, and also processed the most potent ecKAS III inhibitory activity with IC50 of 5.3µM. In addition, docking simulation also carried out in this study to give a potent prediction binding mode between the small molecule and ecKAS III (PDB code: 1hnj) protein.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/antagonistas & inhibidores , Antibacterianos/síntesis química , Diseño de Fármacos , Proteínas de Escherichia coli/antagonistas & inhibidores , Tiazoles/química , Tiazoles/síntesis química , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Sitios de Unión , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Tiazoles/farmacología
12.
Genes (Basel) ; 14(2)2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36833349

RESUMEN

A variety of secondary metabolites contributing to plant growth are synthesized by bacterial nonribosomal peptide synthases (NRPSs). Among them, the NRPS biosynthesis of surfactin is regulated by the SrfA operon. To explore the molecular mechanism for the diversity of surfactins produced by bacteria within the genus Bacillus, we performed a genome-wide identification study focused on three critical genes of the SrfA operon-SrfAA, SrfAB and SrfAC-from 999 Bacillus genomes (belonging to 47 species). Gene family clustering indicated the three genes can be divided into 66 orthologous groups (gene families), of which a majority comprised members of multiple genes (e.g., OG0000009 had members of all three SrfAA, SrfAB and SrfAC genes), indicating high sequence similarity among the three genes. Phylogenetic analyses also found that none of the three genes formed monophyletic groups, but were usually arranged in a mixed manner, suggesting the close evolutionary relationship among the three genes. Considering the module structure of the three genes, we propose that self-duplication, especially tandem duplications, might have contributed to the initial establishment of the entire SrfA operon, and further gene fusion and recombination as well as accumulated mutations might have continuously shaped the different functional roles of SrfAA, SrfAB and SrfAC. Overall, this study provides novel insight into metabolic gene clusters and operon evolution in bacteria.


Asunto(s)
Bacillus , Bacillus subtilis/genética , Filogenia , Péptidos Cíclicos/genética , Péptidos Cíclicos/metabolismo , Operón
13.
Hortic Res ; 10(9): uhad147, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37691964

RESUMEN

MicroTom has a short growth cycle and high transformation efficiency, and is a prospective model plant for studying organ development, metabolism, and plant-microbe interactions. Here, with a newly assembled reference genome for this tomato cultivar and abundant RNA-seq data derived from tissues of different organs/developmental stages/treatments, we constructed multiple gene co-expression networks, which will provide valuable clues for the identification of important genes involved in diverse regulatory pathways during plant growth, e.g. arbuscular mycorrhizal symbiosis and fruit development. Additionally, non-coding RNAs, including miRNAs, lncRNAs, and circRNAs were also identified, together with their potential targets. Interacting networks between different types of non-coding RNAs (miRNA-lncRNA), and non-coding RNAs and genes (miRNA-mRNA and lncRNA-mRNA) were constructed as well. Our results and data will provide valuable information for the study of organ differentiation and development of this important fruit. Lastly, we established a database (http://eplant.njau.edu.cn/microTomBase/) with genomic and transcriptomic data, as well as details of gene co-expression and interacting networks on MicroTom, and this database should be of great value to those who want to adopt MicroTom as a model plant for research.

14.
Genetics ; 220(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35143673

RESUMEN

In plants, large numbers of R genes, which segregate as loci with alternative alleles conferring different levels of disease resistance to pathogens, have been maintained over a long period of evolution. The reason why hosts harbor susceptible alleles in view of their null contribution to resistance is unclear. In rice, a single copy gene, Pi-ta, segregates for 2 expressed clades of alleles, 1 resistant and the other susceptible. We simulated loss-of-function of the Pi-ta susceptible allele using the CRISPR/Cas9 system to detect subsequent fitness changes and obtained insights into fitness effects related to the retention of the Pi-ta susceptible allele. Our creation of an artificial knockout of the Pi-ta susceptible allele suffered fitness-related trait declines of up to 49% in terms of filled grain yield upon the loss of Pi-ta function. The Pi-ta susceptible alleles might serve as an off-switch to downstream immune signaling, thus contributing to the fine-tuning of plant defense responses. The results demonstrated that the susceptible Pi-ta alleles should have evolved pleiotropic functions, facilitating their retention in populations. As Pi-ta is a single copy gene with no paralogs in the genome, its function cannot be compensated by an alternative gene; whereas most other R genes form gene clusters by tandem duplications, and the function could be compensated by paralogs with high sequence similarity. This attempt to evaluate the fitness effects of the R gene in crops indicates that not all disease resistance genes incur fitness costs, which also provides a plausible explanation for how host genomes can tolerate the possible genetic load associated with a vast repertoire of R genes.


Asunto(s)
Oryza , Enfermedades de las Plantas , Alelos , Resistencia a la Enfermedad/genética , Oryza/genética , Fenotipo , Enfermedades de las Plantas/genética
15.
Genes (Basel) ; 13(12)2022 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-36553496

RESUMEN

Paeonia suffruticosa Andr., a member of Paeoniaceae, is native to China. In its 1600 years' cultivation, more than 2000 cultivars for different purposes (ornamental, medicinal and oil use) have been inbred. However, there are still some controversies regarding the provenance of tree peony cultivars and the phylogenetic relationships between and within different cultivar groups. In this study, plastid genome sequencing was performed on 10 representative tree peony cultivars corresponding to 10 different flower types. Structure and comparative analyses of the plastid genomes showed that the total lengths of the chloroplast genome of the 10 cultivars ranged from 152,153 to 152,385 bp and encoded 84-88 protein-coding genes, 8 rRNAs and 31-40 tRNAs. The number of simple sequence repeats and interspersed repeat sequences of the 10 cultivars ranged from 65-68 and 40-42, respectively. Plastid phylogenetic relationships of Paeonia species/cultivars were reconstructed incorporating data from our newly sequenced plastid genomes and 15 published species, and results showed that subsect. Vaginatae was the closest relative to the central plains cultivar group with robust support, and that it may be involved in the formation of the group. Paeonia ostii was recovered as a successive sister group to this lineage. Additionally, eleven morphological characteristics of flowers were mapped to the phylogenetic skeleton to reconstruct the evolutionary trajectory of flower architecture in Paeoniaceae.


Asunto(s)
Paeonia , Paeonia/genética , Filogenia , Flores/genética , Mapeo Cromosómico , Plastidios/genética
16.
Hortic Res ; 9: uhac067, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480957

RESUMEN

Hibiscus hamabo is a semi-mangrove species with strong tolerance to salt and waterlogging stress. However, the molecular basis and mechanisms that underlie this strong adaptability to harsh environments remain poorly understood. Here, we assembled a high-quality, chromosome-level genome of this semi-mangrove plant and analyzed its transcriptome under different stress treatments to reveal regulatory responses and mechanisms. Our analyses suggested that H. hamabo has undergone two recent successive polyploidy events, a whole-genome duplication followed by a whole-genome triplication, resulting in an unusually large gene number (107 309 genes). Comparison of the H. hamabo genome with that of its close relative Hibiscus cannabinus, which has not experienced a recent WGT, indicated that genes associated with high stress resistance have been preferentially preserved in the H. hamabo genome, suggesting an underlying association between polyploidy and stronger stress resistance. Transcriptomic data indicated that genes in the roots and leaves responded differently to stress. In roots, genes that regulate ion channels involved in biosynthetic and metabolic processes responded quickly to adjust the ion concentration and provide metabolic products to protect root cells, whereas no such rapid response was observed from genes in leaves. Using co-expression networks, potential stress resistance genes were identified for use in future functional investigations. The genome sequence, along with several transcriptome datasets, provide insights into genome evolution and the mechanism of salt and waterlogging tolerance in H. hamabo, suggesting the importance of polyploidization for environmental adaptation.

17.
Front Plant Sci ; 13: 982323, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072321

RESUMEN

The Ilex L. (hollies) genus of Aquifoliaceae shows high species diversity in tropical and subtropical regions of Asia and South America. Throughout the range of the genus, Ilex species have been widely used in beverage and medicine production and as ornamentals. Here, we assembled a high-quality, chromosome-level genome of Ilex latifolia, which has extremely high economic value because of its useful secondary metabolite production and the high ornamental value of its decorative red berries. The 99.8% genome sequence was anchored to 20 pseudochromosomes, with a total length of 766.02 Mb and a scaffold N50 of 33.45 Mb. Based on the comparative genomic analysis of 14 angiosperm species, we recovered I. latifolia as the sister group to all other campanulids. Two whole-genome duplication (WGD) events were identified in hollies: one shared ancient WGD in the ancestor of all eudicots and a recent and independent WGD in hollies. We performed a genome-wide search to screen candidate genes involved in the biosynthesis of pentacyclic triterpenoid saponins in I. latifolia. Three subfamilies of CYP450 (CYP71A, CYP72A, and CYP716A) appear to have expanded. The transcriptomic analysis of I. latifolia leaves at five developmental stages revealed that two CYP716A genes and one CYP72A gene probably play important roles in this biosynthetic pathway. In addition, we totally identified 12 genes in the biosynthesis pathways of pelargonidin and cyanidin and observed their differential expression in green and red fruit pericarps, suggesting an association between pelargonidin and cyanidin biosynthesis and fruit pericarp color change. The accumulation of pelargonidin and cyanidin is expected to play an important role in the ornamental value of I. latifolia. Altogether, this study elucidated the molecular basis of the medicinal and ornamental value of I. latifolia, providing a data basis and promising clues for further applications.

18.
Nat Plants ; 8(4): 389-401, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35437001

RESUMEN

Cycads represent one of the most ancient lineages of living seed plants. Identifying genomic features uniquely shared by cycads and other extant seed plants, but not non-seed-producing plants, may shed light on the origin of key innovations, as well as the early diversification of seed plants. Here, we report the 10.5-Gb reference genome of Cycas panzhihuaensis, complemented by the transcriptomes of 339 cycad species. Nuclear and plastid phylogenomic analyses strongly suggest that cycads and Ginkgo form a clade sister to all other living gymnosperms, in contrast to mitochondrial data, which place cycads alone in this position. We found evidence for an ancient whole-genome duplication in the common ancestor of extant gymnosperms. The Cycas genome contains four homologues of the fitD gene family that were likely acquired via horizontal gene transfer from fungi, and these genes confer herbivore resistance in cycads. The male-specific region of the Y chromosome of C. panzhihuaensis contains a MADS-box transcription factor expressed exclusively in male cones that is similar to a system reported in Ginkgo, suggesting that a sex determination mechanism controlled by MADS-box genes may have originated in the common ancestor of cycads and Ginkgo. The C. panzhihuaensis genome provides an important new resource of broad utility for biologists.


Asunto(s)
Cycas , Cycadopsida/genética , Cycas/genética , Genes de Plantas , Ginkgo biloba/genética , Filogenia , Semillas/genética
19.
Front Plant Sci ; 12: 777157, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992620

RESUMEN

Magnoliids are the third-largest group of angiosperms and occupy a critical position in angiosperm evolution. In the past years, due to the lack of sequenced genomes, the disease resistance gene (R gene) profile of magnoliids remains poorly understood. By the genome-wide identification of 1,832 NLR genes from seven magnoliid genomes, we built a framework for the evolution of magnoliid R genes. TNL genes were completely absent from five magnoliids, presumably due to immune pathway deficiencies. A total of 74 ancestral R genes (70 CNLs, 3 TNLs, and 1 RNL) were recovered in a common ancestor of magnoliids, from which all current NLR gene repertoires were derived. Tandem duplication served as the major drive for NLR genes expansion in seven magnoliid genomes, as most surveyed angiosperms. Due to recent rapid expansions, most magnoliids exhibited "a first expansion followed by a slight contraction and a further stronger expansion" evolutionary pattern, while both Litsea cubeba and Persea americana showed a two-times-repeated pattern of "expansion followed by contraction." The transcriptome analysis of seven different tissues of Saururus chinensis revealed a low expression of most NLR genes, with some R genes displaying a relatively higher expression in roots and fruits. Overall, our study sheds light on the evolution of NLR genes in magnoliids, compensates for insufficiency in major angiosperm lineages, and provides an important reference for a better understanding of angiosperm NLR genes.

20.
Nat Commun ; 12(1): 3498, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108452

RESUMEN

Plant genomes vary greatly in size, organization, and architecture. Such structural differences may be highly relevant for inference of genome evolution dynamics and phylogeny. Indeed, microsynteny-the conservation of local gene content and order-is recognized as a valuable source of phylogenetic information, but its use for the inference of large phylogenies has been limited. Here, by combining synteny network analysis, matrix representation, and maximum likelihood phylogenetic inference, we provide a way to reconstruct phylogenies based on microsynteny information. Both simulations and use of empirical data sets show our method to be accurate, consistent, and widely applicable. As an example, we focus on the analysis of a large-scale whole-genome data set for angiosperms, including more than 120 available high-quality genomes, representing more than 50 different plant families and 30 orders. Our 'microsynteny-based' tree is largely congruent with phylogenies proposed based on more traditional sequence alignment-based methods and current phylogenetic classifications but differs for some long-contested and controversial relationships. For instance, our synteny-based tree finds Vitales as early diverging eudicots, Saxifragales within superasterids, and magnoliids as sister to monocots. We discuss how synteny-based phylogenetic inference can complement traditional methods and could provide additional insights into some long-standing controversial phylogenetic relationships.


Asunto(s)
Genoma de Planta/genética , Magnoliopsida/genética , Filogenia , Sintenía , Evolución Molecular , Genes de Plantas/genética , Magnoliopsida/clasificación , Modelos Genéticos , Familia de Multigenes/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda