Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 388
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(41): e2122099119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191206

RESUMEN

Viruses pose a great threat to animal and plant health worldwide, with many being dependent on insect vectors for transmission between hosts. While the virus-host arms race has been well established, how viruses and insect vectors adapt to each other remains poorly understood. Begomoviruses comprise the largest genus of plant-infecting DNA viruses and are exclusively transmitted by the whitefly Bemisia tabaci. Here, we show that the vector Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway plays an important role in mediating the adaptation between the begomovirus tomato yellow leaf curl virus (TYLCV) and whiteflies. We found that the JAK/STAT pathway in B. tabaci functions as an antiviral mechanism against TYLCV infection in whiteflies as evidenced by the increase in viral DNA and coat protein (CP) levels after inhibiting JAK/STAT signaling. Two STAT-activated effector genes, BtCD109-2 and BtCD109-3, mediate this anti-TYLCV activity. To counteract this vector immunity, TYLCV has evolved strategies that impair the whitefly JAK/STAT pathway. Infection of TYLCV is associated with a reduction of JAK/STAT pathway activity in whiteflies. Moreover, TYLCV CP binds to STAT and blocks its nuclear translocation, thus, abrogating the STAT-dependent transactivation of target genes. We further show that inhibition of the whitefly JAK/STAT pathway facilitates TYLCV transmission but reduces whitefly survival and fecundity, indicating that this JAK/STAT-dependent TYLCV-whitefly interaction plays an important role in keeping a balance between whitefly fitness and TYLCV transmission. This study reveals a mechanism of plant virus-insect vector coadaptation in relation to vector survival and virus transmission.


Asunto(s)
Begomovirus , Hemípteros , Virus de Plantas , Solanum lycopersicum , Animales , Antivirales , Begomovirus/genética , ADN Viral , Hemípteros/fisiología , Quinasas Janus/genética , Solanum lycopersicum/genética , Enfermedades de las Plantas , Virus de Plantas/genética , Factores de Transcripción STAT/genética , Transducción de Señal
2.
Anticancer Drugs ; 35(1): 109-115, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37578745

RESUMEN

Despite the initial promise of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in effectively combating tumor growth, the majority of patients with advanced non-small cell lung cancers (NSCLCs) inevitably develop resistance to these treatments. An infrequent genetic mutation known as BRAFV600E has been identified as a contributing factor to the emergence of acquired resistance to EGFR-TKIs. Genetic alterations in BRAF, particularly V600E, contribute to resistance to osimertinib. However, a combination therapy involving osimertinib, dabrafenib (a BRAF inhibitor), and trametinib has shown effectiveness in overcoming BRAF V600E-mediated resistance in advanced lung adenocarcinoma. This treatment regimen holds promise for similar cases. In our case report, the combination of osimertinib, dabrafenib, and trametinib effectively overcame osimertinib resistance and resulted in sustained partial remission.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas B-raf/genética , Compuestos de Anilina , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Receptores ErbB/genética , Resistencia a Antineoplásicos
3.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34155112

RESUMEN

Female mosquitoes transmit numerous devastating human diseases because they require vertebrate blood meal for egg development. MicroRNAs (miRNAs) play critical roles across multiple reproductive processes in female Aedes aegypti mosquitoes. However, how miRNAs are controlled to coordinate their activity with the demands of mosquito reproduction remains largely unknown. We report that the ecdysone receptor (EcR)-mediated 20-hydroxyecdysone (20E) signaling regulates miRNA expression in female mosquitoes. EcR RNA-interference silencing linked to small RNA-sequencing analysis reveals that EcR not only activates but also represses miRNA expression in the female mosquito fat body, a functional analog of the vertebrate liver. EcR directly represses the expression of clustered miR-275 and miR-305 before blood feeding when the 20E titer is low, whereas it activates their expression in response to the increased 20E titer after a blood meal. Furthermore, we find that SMRTER, an insect analog of the vertebrate nuclear receptor corepressors SMRT and N-CoR, interacts with EcR in a 20E-sensitive manner and is required for EcR-mediated repression of miRNA expression in Ae. aegypti mosquitoes. In addition, we demonstrate that miR-275 and miR-305 directly target glutamate semialdehyde dehydrogenase and AAEL009899, respectively, to facilitate egg development. This study reveals a mechanism for how miRNAs are controlled by the 20E signaling pathway to coordinate their activity with the demands of mosquito reproduction.


Asunto(s)
Aedes/genética , Dengue/parasitología , Ecdisterona/farmacología , MicroARNs/genética , Mosquitos Vectores/genética , Receptores de Esteroides/metabolismo , Aedes/efectos de los fármacos , Animales , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Cuerpo Adiposo/efectos de los fármacos , Cuerpo Adiposo/metabolismo , Conducta Alimentaria/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Histona Desacetilasas/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , MicroARNs/metabolismo , Mosquitos Vectores/efectos de los fármacos , Sistemas de Lectura Abierta/genética , Óvulo/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética/efectos de los fármacos , Transcriptoma/genética
4.
Molecules ; 29(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542881

RESUMEN

RNAs play crucial roles in various essential biological functions, including catalysis and gene regulation. Despite the widespread use of coarse-grained (CG) models/simulations to study RNA 3D structures and dynamics, their direct application is challenging due to the lack of atomic detail. Therefore, the reconstruction of full atomic structures is desirable. In this study, we introduced a straightforward method called ABC2A for reconstructing all-atom structures from RNA CG models. ABC2A utilizes diverse nucleotide fragments from known structures to assemble full atomic structures based on the CG atoms. The diversification of assembly fragments beyond standard A-form ones, commonly used in other programs, combined with a highly simplified structure refinement process, ensures that ABC2A achieves both high accuracy and rapid speed. Tests on a recent large dataset of 361 RNA experimental structures (30-692 nt) indicate that ABC2A can reconstruct full atomic structures from three-bead CG models with a mean RMSD of ~0.34 Å from experimental structures and an average runtime of ~0.5 s (maximum runtime < 2.5 s). Compared to the state-of-the-art Arena, ABC2A achieves a ~25% improvement in accuracy and is five times faster in speed.


Asunto(s)
Simulación de Dinámica Molecular , ARN , ARN/química , Nucleótidos
5.
Biophys J ; 122(8): 1503-1516, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36924021

RESUMEN

RNA pseudoknots are a kind of important tertiary motif, and the structures and stabilities of pseudoknots are generally critical to the biological functions of RNAs with the motifs. In this work, we have carefully refined our previously developed coarse-grained model with salt effect through involving a new coarse-grained force field and a replica-exchange Monte Carlo algorithm, and employed the model to predict structures and stabilities of complex RNA pseudoknots in ion solutions beyond minimal H-type pseudoknots. Compared with available experimental data, the newly refined model can successfully predict 3D structures from sequences for the complex RNA pseudoknots including SARS-CoV-2 programming-1 ribosomal frameshifting element and Zika virus xrRNA, and can reliably predict the thermal stabilities of RNA pseudoknots with various sequences and lengths over broad ranges of monovalent/divalent salts. In addition, for complex pseudoknots including SARS-CoV-2 frameshifting element, our analyses show that their thermally unfolding pathways are mainly dependent on the relative stabilities of unfolded intermediate states, in analogy to those of minimal H-type pseudoknots.


Asunto(s)
COVID-19 , Infección por el Virus Zika , Virus Zika , Humanos , ARN/química , Conformación de Ácido Nucleico , SARS-CoV-2/genética , Cloruro de Sodio , Virus Zika/genética , Virus Zika/metabolismo
6.
PLoS Comput Biol ; 18(10): e1010501, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36260618

RESUMEN

The three-dimensional (3D) structure and stability of DNA are essential to understand/control their biological functions and aid the development of novel materials. In this work, we present a coarse-grained (CG) model for DNA based on the RNA CG model proposed by us, to predict 3D structures and stability for both dsDNA and ssDNA from the sequence. Combined with a Monte Carlo simulated annealing algorithm and CG force fields involving the sequence-dependent base-pairing/stacking interactions and an implicit electrostatic potential, the present model successfully folds 20 dsDNAs (≤52nt) and 20 ssDNAs (≤74nt) into the corresponding native-like structures just from their sequences, with an overall mean RMSD of 3.4Å from the experimental structures. For DNAs with various lengths and sequences, the present model can make reliable predictions on stability, e.g., for 27 dsDNAs with/without bulge/internal loops and 24 ssDNAs including pseudoknot, the mean deviation of predicted melting temperatures from the corresponding experimental data is only ~2.0°C. Furthermore, the model also quantificationally predicts the effects of monovalent or divalent ions on the structure stability of ssDNAs/dsDNAs.


Asunto(s)
ADN , ARN , Conformación de Ácido Nucleico , ARN/química , ADN de Cadena Simple , Iones
7.
Org Biomol Chem ; 21(46): 9123-9127, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37947448

RESUMEN

A sulfoxide directed C-H metalation/boration/B2Pin2 mediated reduction/Suzuki coupling process to synthesize 4-substituted dibenzothiophene (DBT) in one-pot from dibenzothiophene-5-oxide (DBTO) was developed. A variety of DBT-based heterobiaryls were prepared in satisfactory to good yields. A mechanism was proposed. The application of this methodology was demonstrated by synthesizing a luminescent material.

8.
Neoplasma ; 70(2): 260-271, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37226933

RESUMEN

Metabolic reprogramming is a common feature of glioblastoma (GBM) progression and metastasis. Altered lipid metabolism is one of the most prominent metabolic alterations in cancer. Understanding the links between phospholipid remodeling and GBM tumorigenesis may help develop new anticancer strategies and improve treatments to overcome drug resistance. We used metabolomic and transcriptomic analyses to systematically investigate metabolic and molecular changes in low-grade glioma (LGG) and GBM. We then re-established the reprogrammed metabolic flux and membrane lipid composition in GBM based on metabolomic and transcriptomic analyses. By inhibiting Aurora A kinase via RNA interference (RNAi) and inhibitor treatment, we investigated the effect of Aurora A kinase on phospholipid reprogramming LPCAT1 enzyme expression and GBM cell proliferation in vitro and in vivo. We found that GBM displayed aberrant glycerophospholipid and glycerolipid metabolism compared with LGG. Metabolic profiling indicated that fatty acid synthesis and uptake for phospholipid synthesis were significantly increased in GBM compared to LGG. The unsaturated phosphatidylcholine (PC) and phosphatidylethanolamine (PE) levels were significantly decreased in GBM compared to LGG. The expression level of LPCAT1, which is required for the synthesis of saturated PC and PE, was upregulated in GBM, and the expression of LPCAT4, which is required for the synthesis of unsaturated PC and PE, was downregulated in GBM. Notably, the inhibition of Aurora A kinase by shRNA knockdown and treatment with Aurora A kinase inhibitors such as Alisertib, AMG900, or AT9283 upregulated LPCAT1 mRNA and protein expression in vitro. In vivo, the inhibition of Aurora A kinase with Alisertib increased LPCAT1 protein expression. Phospholipid remodeling and a reduction in unsaturated membrane lipid components were found in GBM. Aurora A kinase inhibition increased LPCAT1 expression and suppressed GBM cell proliferation. The combination of Aurora kinase inhibition with LPCAT1 inhibition may exert promising synergistic effects on GBM.


Asunto(s)
Glioblastoma , Glioma , Humanos , Glioblastoma/tratamiento farmacológico , Fosfolípidos , Aurora Quinasa A , Lípidos de la Membrana , 1-Acilglicerofosfocolina O-Aciltransferasa
9.
Proc Natl Acad Sci U S A ; 117(29): 16928-16937, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32636269

RESUMEN

Whereas most of the arthropod-borne animal viruses replicate in their vectors, this is less common for plant viruses. So far, only some plant RNA viruses have been demonstrated to replicate in insect vectors and plant hosts. How plant viruses evolved to replicate in the animal kingdom remains largely unknown. Geminiviruses comprise a large family of plant-infecting, single-stranded DNA viruses that cause serious crop losses worldwide. Here, we report evidence and insight into the replication of the geminivirus tomato yellow leaf curl virus (TYLCV) in the whitefly (Bemisia tabaci) vector and that replication is mainly in the salivary glands. We found that TYLCV induces DNA synthesis machinery, proliferating cell nuclear antigen (PCNA) and DNA polymerase δ (Polδ), to establish a replication-competent environment in whiteflies. TYLCV replication-associated protein (Rep) interacts with whitefly PCNA, which recruits DNA Polδ for virus replication. In contrast, another geminivirus, papaya leaf curl China virus (PaLCuCNV), does not replicate in the whitefly vector. PaLCuCNV does not induce DNA-synthesis machinery, and the Rep does not interact with whitefly PCNA. Our findings reveal important mechanisms by which a plant DNA virus replicates across the kingdom barrier in an insect and may help to explain the global spread of this devastating pathogen.


Asunto(s)
Begomovirus/fisiología , ADN Polimerasa III/metabolismo , Hemípteros/virología , Proteínas de Insectos/metabolismo , Insectos Vectores/virología , Replicación Viral , Animales , Begomovirus/genética , ADN Polimerasa III/genética , Gossypium/parasitología , Gossypium/virología , Hemípteros/patogenicidad , Interacciones Huésped-Patógeno , Proteínas de Insectos/genética , Insectos Vectores/patogenicidad , Glándulas Salivales/metabolismo , Glándulas Salivales/virología
10.
Pestic Biochem Physiol ; 195: 105565, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37666620

RESUMEN

Insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have been applied in sprayable formulations and expressed in transgenic crops for the control of pests in the field. When exposed to Bt proteins insect larvae display feeding cessation, yet the mechanism for this phenomenon remains unknown. In this study, we investigated the feeding behavior and underlying mechanisms of cotton bollworm (Helicoverpa armigera) larvae after exposure to the Cry1Ac protein from Bt. Three H. armigera strains were studied: the susceptible SCD strain, the C2/3-KO strain with HaABCC2 and HaABCC3 knocked out and high-level resistance to Cry1Ac (>15,000-fold), and the SCD-KI strain with a T92C point mutation in tetraspanin (HaTSPAN1) and medium-level resistance to Cry1Ac (125-fold). When determining the percentage of insects that continued feeding after various exposure times to Cry1Ac, we observed quick cessation of feeding in larvae from the susceptible SCD strain, whereas larvae from the C2/3-KO strain did not display feeding cessation. In contrast, larvae from the SCD-KI strain rapidly recovered from the initial feeding cessation. Histopathological analyses and qRT-PCR in midguts of SCD larvae after Cry1Ac exposure detected serious epithelial damage and significantly reduced expression of the neuropeptide F gene (NPF) and its potential receptor gene NPFR, which are reported to promote insect feeding. Neither epithelial damage nor altered NPF and NPFR expression appeared in midguts of C2/3-KO larvae after Cry1Ac treatment. The same treatment in SCD-KI larvae resulted in milder epithelial damage and subsequent repair, and a decrease followed by an initial increase in NPF and NPFR expression. These results demonstrate that the feeding cessation response to Cry1Ac in cotton bollworm larvae is closely associated with midgut epithelial damage and downregulation of NPF and NPFR expression. This information provides clues to the mechanism of feeding cessation in response to Bt intoxication and contributes to the mode of action of the Cry1Ac toxin in target pests.


Asunto(s)
Bacillus thuringiensis , Insecticidas , Mariposas Nocturnas , Animales , Larva , Bacillus thuringiensis/genética , Insecticidas/toxicidad , Animales Modificados Genéticamente , Gossypium , Mariposas Nocturnas/genética
11.
Molecules ; 28(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37375388

RESUMEN

DNA carries the genetic information required for the synthesis of RNA and proteins and plays an important role in many processes of biological development. Understanding the three-dimensional (3D) structures and dynamics of DNA is crucial for understanding their biological functions and guiding the development of novel materials. In this review, we discuss the recent advancements in computer methods for studying DNA 3D structures. This includes molecular dynamics simulations to analyze DNA dynamics, flexibility, and ion binding. We also explore various coarse-grained models used for DNA structure prediction or folding, along with fragment assembly methods for constructing DNA 3D structures. Furthermore, we also discuss the advantages and disadvantages of these methods and highlight their differences.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Proteínas/química , ADN/química , ARN/química , Pliegue de Proteína
12.
Molecules ; 28(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37959870

RESUMEN

Astragalus membranaceus is a traditional Chinese medicine derived from the roots of Astragalus membranaceus (Fisch.) Bge., which has the same medicinal and edible uses in China. It is also widely used in daily food, and its pharmacological effects mainly include antioxidant effects, vascular softening effects, etc. Currently, it is increasingly widely used in the prevention of hypertension, cerebral ischemia, and stroke in China. Formononetin and its glucopyranoside (ononin) are both important components of Astragalus membranaceuss and may play important roles in the treatment of cardiovascular diseases (CVDs). This study conducted metabolic studies using formononectin and its glucopyranoside (ononin), including a combination of the in vitro metabolism of Formonetin using rat liver S9 and the in vivo metabolism of ononin administered orally to rats. Five metabolites (Sm2, 7, 9, 10, and 12) were obtained from the solution incubated with formononetin and rat hepatic S9 fraction using chromatographic methods. The structures of the five metabolites were elucidated as (Sm2)6,7,4'-trihydroxy-isoflavonoid; (Sm7)7,4'-dihydroxy-isoflavonoid; (Sm9)7,8,4'-trihydroxy-isoflavonoid; (Sm10)7,8,-dihydroxy-4'-methoxy-isoflavonoid; and (Sm12)6,7-dihydroxy-4'-methoxy- isoflavonoid on the basis of UV, NMR, and MS data. Totally, 14 metabolites were identified via HPLC-DAD-ESI-IT-TOF-MSn analysis, from which the formononetin was incubated with rat hepatic S9 fraction, and the main metabolic pathways were hydroxylation, demethylation, and glycosylation. Then, 21 metabolites were identified via HPLC-DAD-ESI-IT-TOF-MSn analysis from the urine samples from SD rats to which ononin was orally administered, and the main metabolic pathways were glucuronidation, hydroxylation, demethylation, and sulfonation. The main difference between the in vitro metabolism of formononetin and the in vivo metabolism of ononin is that ononin undergoes deglycemic transformation into Formonetin in the rat intestine, while Formonetin is absorbed into the bloodstream for metabolism, and the metabolic products also produce combined metabolites during in vivo metabolism. The six metabolites obtained from the aforementioned separation indicate the primary forms of formononetin metabolism, and due to their higher contents of similar isoflavone metabolites, they are considered the main active compounds that are responsible for pharmacological effects. To investigate the metabolites of the active ingredients of formononetin in the rat liver S9 system, network pharmacology was used to evaluate the cardiovascular disease (CVD) activities of the six primary metabolites that were structurally identified. Additionally, the macromolecular docking results of six main components and two core targets (HSP90AA1 and SRC) related to CVD showed that formononetin and its main metabolites, Sm10 and Sm12, may have roles in CVD treatment due to their strong binding activities with the HSP90AA1 receptor, while the Sm7 metabolite may have a role in CVD treatment due to its strong binding activity with the SRC receptor.


Asunto(s)
Enfermedades Cardiovasculares , Medicamentos Herbarios Chinos , Isoflavonas , Ratas , Animales , Ratas Sprague-Dawley , Medicamentos Herbarios Chinos/química , Farmacología en Red , Isoflavonas/química , Cromatografía Líquida de Alta Presión/métodos , Hígado/metabolismo
13.
Chin J Traumatol ; 26(3): 147-154, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35985904

RESUMEN

PURPOSE: Child head injury under impact scenarios (e.g. falls, vehicle crashes, etc.) is an important topic in the field of injury biomechanics. The head of piglet was commonly used as the surrogate to investigate the biomechanical response and mechanisms of pediatric head injuries because of the similar cellular structures and material properties. However, up to date, piglet head models with accurate geometry and material properties, which have been validated by impact experiments, are seldom. We aim to develop such a model for future research. METHODS: In this study, first, the detailed anatomical structures of the piglet head, including the skull, suture, brain, pia mater, dura mater, cerebrospinal fluid, scalp and soft tissue, were constructed based on CT scans. Then, a structured butterfly method was adopted to mesh the complex geometries of the piglet head to generate high-quality elements and each component was assigned corresponding constitutive material models. Finally, the guided drop tower tests were conducted and the force-time histories were ectracted to validate the piglet head finite element model. RESULTS: Simulations were conducted on the developed finite element model under impact conditions and the simulation results were compared with the experimental data from the guided drop tower tests and the published literature. The average peak force and duration of the guide drop tower test were similar to that of the simulation, with an error below 10%. The inaccuracy was below 20%. The average peak force and duration reported in the literature were comparable to those of the simulation, with the exception of the duration for an impact energy of 11 J. The results showed that the model was capable to capture the response of the pig head. CONCLUSION: This study can provide an effective tool for investigating child head injury mechanisms and protection strategies under impact loading conditions.


Asunto(s)
Traumatismos Craneocerebrales , Cráneo , Animales , Porcinos , Análisis de Elementos Finitos , Cráneo/lesiones , Traumatismos Craneocerebrales/diagnóstico por imagen , Encéfalo , Fenómenos Biomecánicos , Cuero Cabelludo
14.
Biophys J ; 121(1): 142-156, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34798137

RESUMEN

Knowledge-based statistical potentials have been shown to be rather effective in protein 3-dimensional (3D) structure evaluation and prediction. Recently, several statistical potentials have been developed for RNA 3D structure evaluation, while their performances are either still at a low level for the test datasets from structure prediction models or dependent on the "black-box" process through neural networks. In this work, we have developed an all-atom distance-dependent statistical potential based on residue separation for RNA 3D structure evaluation, namely rsRNASP, which is composed of short- and long-ranged potentials distinguished by residue separation. The extensive examinations against available RNA test datasets show that rsRNASP has apparently higher performance than the existing statistical potentials for the realistic test datasets with large RNAs from structure prediction models, including the newly released RNA-Puzzles dataset, and is comparable to the existing top statistical potentials for the test datasets with small RNAs or near-native decoys. In addition, rsRNASP is superior to RNA3DCNN, a recently developed scoring function through 3D convolutional neural networks. rsRNASP and the relevant databases are available to the public.


Asunto(s)
Proteínas , ARN , Proteínas/química , ARN/química , ARN/genética
15.
Plant Biotechnol J ; 20(9): 1683-1700, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35527510

RESUMEN

Proanthocyanidins (PAs) have antioxidant properties and are beneficial to human health. The fruit of apple (Malus × domestica Borkh.), especially the peel, is rich in various flavonoids, such as PAs, and thus is an important source of dietary antioxidants. Previous research on the regulation of PAs in apple has mainly focussed on the transcription level, whereas studies conducted at the post-transcriptional level are relatively rare. In this study, we investigated the function of mdm-miR858, a miRNA with multiple functions in plant development, in the peel of apple fruit. We showed that mdm-miR858 negatively regulated PA accumulation by targeting MdMYB9/11/12 in the peel. During fruit development, mdm-miR858 expression was negatively correlated with MdMYB9/11/12 expression and PA accumulation. A 5'-RACE experiment, GUS staining assays and transient luminescent assays indicated that mdm-miR858 cleaved and inhibited the expression of MdMYB9/11/12. Overexpression of mdm-miR858 in apple calli, tobacco and Arabidopsis reduced the accumulation of PAs induced by overexpression of MdMYB9/11/12. Furthermore, we found that MdBBX22 bound to the mdm-miR858 promoter and induced its expression. Overexpression of MdBBX22 induced the expression of mdm-miR858 to inhibit the accumulation of PAs in apple calli overexpressing MdMYB9/11/12. Under light stress, MdBBX22 induced mdm-miR858 expression to inhibit PA accumulation and thereby indirectly enhanced anthocyanin synthesis in the peel. The present results revealed that the MdBBX22-miR858-MdMYB9/11/12 module regulates PA accumulation in apple. The findings provide a reference for further studies of the regulatory mechanism of PA accumulation and the relationship between PAs and anthocyanins.


Asunto(s)
Malus , MicroARNs , Proantocianidinas , Antocianinas , Arabidopsis/genética , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proantocianidinas/biosíntesis
16.
Brief Bioinform ; 21(1): 47-61, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30325405

RESUMEN

Small molecule is a kind of low molecular weight organic compound with variety of biological functions. Studies have indicated that small molecules can inhibit a specific function of a multifunctional protein or disrupt protein-protein interactions and may have beneficial or detrimental effect against diseases. MicroRNAs (miRNAs) play crucial roles in cellular biology, which makes it possible to develop miRNA as diagnostics and therapeutic targets. Several drug-like compound libraries were screened successfully against different miRNAs in cellular assays further demonstrating the possibility of targeting miRNAs with small molecules. In this review, we summarized the concept and functions of small molecule and miRNAs. Especially, five aspects of miRNA functions were exhibited in detail with individual examples. In addition, four disease states that have been linked to miRNA alterations were summed up. Then, small molecules related to four important miRNAs miR-21, 122, 4644 and 27 were selected for introduction. Some important publicly accessible databases and web servers of the experimentally validated or potential small molecule-miRNA associations were discussed. Identifying small molecule targeting miRNAs has become an important goal of biomedical research. Thus, several experimental and computational models have been developed and implemented to identify novel small molecule-miRNA associations. Here, we reviewed four experimental techniques used in the past few years to search for small-molecule inhibitors of miRNAs, as well as three types of models of predicting small molecule-miRNA associations from different perspectives. Finally, we summarized the limitations of existing methods and discussed the future directions for further development of computational models.

17.
J Fish Biol ; 100(2): 498-506, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34813107

RESUMEN

Since 1850, each successive decade has been warmer than any preceding one. Warming could make a major contribution to the growth of fish larvae. To evaluate the influence of water temperature on the growth of larvae who spawned in later spring and early summer, we selected Scomberomorus niphonius, which has important ecological and economic value as a sample fish species. We conducted high-resolution spatiotemporal surveys during the 2015 spawning season at an important spawning ground in China. We found that the temperature required for larval survival was stricter than that for spawning. Within the appropriate temperature range, a rapid rise in water temperature was favourable for larval hatching, but S. niphonius hatched at relatively low temperature exhibited a faster growth rate in the yolk-sac and pre-flexion stages. The accumulated temperature and hatching temperature significantly affected the growth rate of S. niphonius larvae. The model that considered developmental stages provided a better explanation of the data than the model that only considered the temperature effect. The model improvement in terms of variance explained was higher for the early developmental stages than for the later developmental stages, suggesting that stage-specific temperature influences were prominent in the earlier stages, like the yolk-sac stage, and then reduced. Our results implied that water temperature anomalies could be hazardous to fish larvae, especially for fish spawning in late spring and early summer. Given that early-life stage fish are highly sensitive to water temperature, it is imperative to incorporate the potential effects of climate change into fisheries management.


Asunto(s)
Perciformes , Animales , Explotaciones Pesqueras , Peces , Japón , Larva , Temperatura
18.
Molecules ; 27(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36500610

RESUMEN

Axially chiral heterobiaryl frameworks are privileged structures in many natural products, pharmaceutically active molecules, and chiral ligands. Therefore, a variety of approaches for constructing these skeletons have been developed. Among them, de novo synthesis, due to its highly convergent and superior atom economy, serves as a promising strategy to access these challenging scaffolds including C-N, C-C, and N-N chiral axes. So far, several elegant reviews on the synthesis of axially chiral heterobiaryl skeletons have been disclosed, however, atroposelective construction of the heterobiaryl subunits by de novo synthesis was rarely covered. Herein, we summarized the recent advances in the catalytic asymmetric synthesis of the axially chiral heterobiaryl scaffold via de novo synthetic strategies. The related mechanism, scope, and applications were also included.


Asunto(s)
Productos Biológicos , Catálisis , Esqueleto
19.
RNA ; 25(11): 1532-1548, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31391217

RESUMEN

RNA kissing complexes are essential for genomic RNA dimerization and regulation of gene expression, and their structures and stability are critical to their biological functions. In this work, we used our previously developed coarse-grained model with an implicit structure-based electrostatic potential to predict three-dimensional (3D) structures and stability of RNA kissing complexes in salt solutions. For extensive RNA kissing complexes, our model shows great reliability in predicting 3D structures from their sequences, and our additional predictions indicate that the model can capture the dependence of 3D structures of RNA kissing complexes on monovalent/divalent ion concentrations. Moreover, the comparisons with extensive experimental data show that the model can make reliable predictions on the stability for various RNA kissing complexes over wide ranges of monovalent/divalent ion concentrations. Notably, for RNA kissing complexes, our further analyses show the important contribution of coaxial stacking to the 3D structures and stronger stability than the corresponding kissing-interface duplexes at high salts. Furthermore, our comprehensive analyses for RNA kissing complexes reveal that the thermally folding pathway for a complex sequence is mainly determined by the relative stability of two possible folded states of kissing complex and extended duplex, which can be significantly modulated by its sequence.


Asunto(s)
Conformación de Ácido Nucleico , ARN/química , Sales (Química)/química , Cationes Bivalentes , Cationes Monovalentes , Soluciones
20.
RNA ; 25(7): 793-812, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30996105

RESUMEN

Knowledge-based statistical potentials have been shown to be efficient in protein structure evaluation/prediction, and the core difference between various statistical potentials is attributed to the choice of reference states. However, for RNA 3D structure evaluation, a comprehensive examination on reference states is still lacking. In this work, we built six statistical potentials based on six reference states widely used in protein structure evaluation, including averaging, quasi-chemical approximation, atom-shuffled, finite-ideal-gas, spherical-noninteracting, and random-walk-chain reference states, and we examined the six reference states against three RNA test sets including six subsets. Our extensive examinations show that, overall, for identifying native structures and ranking decoy structures, the finite-ideal-gas and random-walk-chain reference states are slightly superior to others, while for identifying near-native structures, there is only a slight difference between these reference states. Our further analyses show that the performance of a statistical potential is apparently dependent on the quality of the training set. Furthermore, we found that the performance of a statistical potential is closely related to the origin of test sets, and for the three realistic test subsets, the six statistical potentials have overall unsatisfactory performance. This work presents a comprehensive examination on the existing reference states and statistical potentials for RNA 3D structure evaluation.


Asunto(s)
Biología Computacional/métodos , ADN/metabolismo , Conformación de Ácido Nucleico , Proteínas/metabolismo , ARN/química , ARN/metabolismo , Bases del Conocimiento , Modelos Moleculares , Valores de Referencia
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda