Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Drug Dev Ind Pharm ; 49(12): 734-747, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37982183

RESUMEN

OBJECT: We report the preparation, characterization, and in-vitro therapeutic evaluation of Metformin-Loaded, Transferrin-Poloxamer-Functionalized Chitosan Nanoparticles (TPMC-NPs) for their repurposing in Alzheimer's disease (AD). SIGNIFICANCE: Usefulness of this work to establish the repurposing of metformin for the treatment of AD. METHODS: The TPMC-NPs were prepared by ionic gelation method using sodium tripolyphosphate. The modification and functionalization were confirmed by FTIR and 1H-NMR spectroscopy. The physicochemical characterization was performed using DLS, FTIR,1H-NMR, CD spectroscopy, SEM, DSC, PXRD, HR-TEM, and hot-stage microscopy. RESULTS: The size, PDI, percent entrapment efficiency, and percent drug loading of TPMC-NPs were found to be 287.4 ± 9.5, 0.273 ± 0.067, 81.15 ± 7.17%, 11.75%±8.21%, respectively. Electron microscope analysis revealed smooth and spherical morphology. The transferrin conjugation efficiency was found to be 46% by the BCA method. CD spectroscopy confirmed no significant loss of the secondary structure of transferrin after conjugation. PXRD data indicated the amorphous nature of the TPMC-NPs. Hot-stage microscopy and DSC confirmed the thermal stability of TPMC-NPs. The in-vitro drug release showed a sustained release at pH 7.4. The DPPH assay displayed 80% antioxidant activity of TPMC-NPs in comparison with metformin and blank NPs. The in-vitro cytotoxicity assay revealed 69.60% viable SH- SY5Y cells at 100 µg/mL of TPMC NPs. The ex-vivo nasal ciliotoxicity and mucoadhesion studies showed no significant toxicity, and 98.16% adhesion, respectively. The nasal permeability study showed the release of metformin within 30 min from TPMC-NPs. CONCLUSION: The obtained results suggested the usefulness of TPMC-NPs in the treatment of AD via the intranasal route.


Asunto(s)
Enfermedad de Alzheimer , Quitosano , Metformina , Nanopartículas , Humanos , Portadores de Fármacos/química , Quitosano/química , Poloxámero/química , Transferrina , Metformina/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Nanopartículas/química , Tamaño de la Partícula
2.
J Microencapsul ; 38(7-8): 572-593, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34591731

RESUMEN

AIM: The inability of drug molecules to cross the 'Blood-Brain Barrier' restrict the effective treatment of Alzheimer's disease. Lipid nanocarriers have proven to be a novel paradigm in brain targeting of bioactive by facilitating suitable therapeutic concentrations to be attained in the brain. METHODS: The relevant information regarding the title of this review article was collected from the peer-reviewed published articles. Also, the physicochemical properties, and their in vitro and in vivo evaluations were presented in this review article. RESULTS: Administration of lipid-based nano-carriers have abilities to target the brain, improve the pharmacokinetic and pharmacodynamics properties of drugs, and mitigate the side effects of encapsulated therapeutic active agents. CONCLUSION: Unlike oral and other routes, the Intranasal route promises high bioavailability, low first-pass effect, better pharmacokinetic properties, bypass of the systemic circulation, fewer incidences of unwanted side effects, and direct delivery of anti-AD drugs to the brain via circumventing 'Blood-Brain Barrier'.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas , Administración Intranasal , Enfermedad de Alzheimer/tratamiento farmacológico , Barrera Hematoencefálica , Encéfalo , Sistemas de Liberación de Medicamentos , Humanos , Lípidos
3.
Drug Dev Ind Pharm ; 41(12): 2018-28, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26006331

RESUMEN

Enteric-coated epichlorohydrin crosslinked dextran microspheres containing 5-Fluorouracil (5-FU) for colon drug delivery was prepared by emulsification-crosslinking method. The formulation variables studied includes different molecular weights of dextran, volume of crosslinking agent, stirring speed, time and temperature. Dextran microspheres showed mean entrapment efficiencies ranging between 77 and 87% and mean particle size ranging between 10 and 25 µm. About 90% of drug was released from uncoated dextran microspheres within 8 h, suggesting the fast release and indicated the drug loaded in uncoated microspheres, released before they reached colon. Enteric coating (Eudragit-S-100 and Eudragit-L-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method. The release study of 5-FU from coated dextran microspheres was complete retardation in simulated gastric fluid (pH 1.2) and once the coating layer of enteric polymer was dissolved at higher pH (7.4 and 6.8), a controlled release of the drug from the microspheres was observed. Further, the release of drug was found to be higher in the presence of dextranase and rat caecal contents, indicating the susceptibility of dextran microspheres to colonic enzymes. Organ distribution and pharmacokinetic study in albino rats was performed to establish the targeting potential of optimized formulation in the colon.


Asunto(s)
Colon/metabolismo , Reactivos de Enlaces Cruzados/farmacocinética , Dextranos/farmacocinética , Portadores de Fármacos/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Epiclorhidrina/farmacocinética , Microesferas , Animales , Colon/efectos de los fármacos , Reactivos de Enlaces Cruzados/administración & dosificación , Reactivos de Enlaces Cruzados/química , Dextranos/administración & dosificación , Dextranos/química , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Epiclorhidrina/administración & dosificación , Epiclorhidrina/química , Femenino , Masculino , Ratas , Comprimidos Recubiertos , Difracción de Rayos X
4.
Life Sci ; 350: 122747, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38797364

RESUMEN

AIMS: To present the recent update on the isolation, engineering techniques for extracellular vesicles, limitations associated with different isolation techniques, different biomedical applications, and challenges of engineered extracellular vesicles for the benefit of researchers from academic, industry, etc. MATERIALS AND METHODS: Peer-reviewed articles from most recognized journals were collected, and presented information was analyzed to discuss collection, chemical, electroporation, cellular, and membrane surface engineering to design extracellular vesicles for various therapeutic applications. In addition, we present the applications and limitations of techniques for the collection of extracellular vesicles. KEY FINDINGS: There is a need for isolation techniques with the gold standard. However, advanced extracellular vesicle isolation techniques showed improved recovery, and purity of extracellular vesicles. Tumor therapy is a major part of the therapy section that illustrates the role of engineered extracellular vesicles in synergetic therapy such as phototherapy, theragnostic, and delivery of genetic materials. In addition, extracellular vesicles have shown their potential in the treatment of retinal disorders, neurodegenerative disease, tuberculosis, osteoporosis, inflammatory bowel disease, vaccine production, and wound healing. SIGNIFICANCE: Engineered extracellular vesicles can deliver cargo to the specific cells, elicit an immune response and could be used for the development of the vaccines in the future. However, the progress is at the initial stage. Overall, this review will provide a comprehensive understanding and could serve as a reference for researchers in the clinical translation of engineered extracellular vesicles in different biomedical fields.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/trasplante , Vesículas Extracelulares/metabolismo , Humanos , Animales , Sistemas de Liberación de Medicamentos/métodos
5.
Mol Neurobiol ; 61(3): 1383-1403, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37707740

RESUMEN

Stroke accounts for one of the top leading reasons for neurological mortality and morbidity around the globe. Both ischemic and hemorrhagic strokes lead to local hypoxia and are brought about by the occlusion or rupturing of the blood vessels. The events taking place after the onset of a stroke include membrane ion pump failure, calcium and glutamate-mediated excitotoxicity, increased ROS production causing DNA damage, mitochondrial dysfunction, oxidative stress, development of brain edema, and microvascular dysfunction. To date, tissue plasminogen activator (tPA) therapy and mechanical removal of blood clots are the only clinically available stroke therapies, approved by Food and Drug Administration (FDA). But because of the narrow therapeutic window of around 4.5 h for tPA therapy and complications like systemic bleeding and anaphylaxis, more clinical trials are ongoing in the same field. Therefore, using nanocarriers with diverse physicochemical properties is a promising strategy in treating and diagnosing stroke as they can efficiently bypass the tight blood-brain barrier (BBB) through mechanisms like receptor-mediated transcytosis and help achieve controlled and targeted drug delivery. In this review, we will mainly focus on the pathophysiology of stroke, BBB alterations following stroke, strategies to target BBB for stroke therapies, different types of nanocarriers currently being used for therapeutic intervention of stroke, and biomarkers as well as imaging techniques used for the detection and diagnosis of stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Humanos , Activador de Tejido Plasminógeno , Isquemia Encefálica/tratamiento farmacológico , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/complicaciones , Hemorragia/complicaciones , Barrera Hematoencefálica
6.
Ageing Res Rev ; 98: 102318, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38705362

RESUMEN

Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by progressive loss of memory. Presently, AD is challenging to treat with current drug therapy as their delivery to the brain is restricted by the presence of the blood-brain barrier. Nanomedicines, due to their size, high surface volume ratio, and ease of tailoring drug release characteristics, showed their potential to treat AD. The nanotechnology-based formulations for brain targeting are expected to enter the market in the near future. So, regulatory frameworks are required to ensure the quality, safety, and effectiveness of the nanomedicines to treat AD. In this review, we discuss different strategies, in-vitro blood-brain permeation models, in-vivo permeation assessment, and regulatory aspects for the development of nanomedicine to treat AD.


Asunto(s)
Enfermedad de Alzheimer , Nanomedicina , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Nanomedicina/métodos , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Sistemas de Liberación de Medicamentos/métodos
7.
Mol Neurobiol ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829514

RESUMEN

Stroke, a severe medical condition arising from abnormalities in the coagulation-fibrinolysis cycle and metabolic processes, results in brain cell impairment and injury due to blood flow obstruction within the brain. Prompt and efficient therapeutic approaches are imperative to control and preserve brain functions. Conventional stroke medications, including fibrinolytic agents, play a crucial role in facilitating reperfusion to the ischemic brain. However, their clinical efficacy is hampered by short plasma half-lives, limited brain tissue distribution attributed to the blood-brain barrier (BBB), and lack of targeted drug delivery to the ischemic region. To address these challenges, diverse nanomedicine strategies, such as vesicular systems, polymeric nanoparticles, dendrimers, exosomes, inorganic nanoparticles, and biomimetic nanoparticles, have emerged. These platforms enhance drug pharmacokinetics by facilitating targeted drug accumulation at the ischemic site. By leveraging nanocarriers, engineered drug delivery systems hold the potential to overcome challenges associated with conventional stroke medications. This comprehensive review explores the pathophysiological mechanism underlying stroke and BBB disruption in stroke. Additionally, this review investigates the utilization of nanocarriers for current therapeutic and diagnostic interventions in stroke management. By addressing these aspects, the review aims to provide insight into potential strategies for improving stroke treatment and diagnosis through a nanomedicine approach.

8.
Ther Deliv ; : 1-15, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235760

RESUMEN

Aim: Preparation of quercetin fullerene conjugate (QFC) for nose-to-brain delivery and their in vitro and ex vivo characterizations.Methods: Carboxylated fullerene was converted into acetylated fullerene and quercetin was conjugated and physically adsorbed on acetylated fullerene.Results: The particle size and zeta potential of QFC and chitosan-coated QFC (CC-QFC) were found to be 179.2 ± 1.10, 293.4 ± 2.757, -5.28 ± 1.43 and 11.6 ± 0.4 respectively. The entrapment efficiency, loading efficiency of QFC were found to be 85.55% and 42.77%. The MTT assay revealed 80.69% SH-SY5Y cell viability at a concentration of 50 µg/ml. CC-QFC showed remarkable (89.20%) ex vivo mucoadhesive properties compared with QFC (66.67%). Further study showed no significant ciliotoxicity by CC-QFC.Conclusion: The obtained results suggested the potential of CC-QFC for treatment in Alzheimer's disease.


In our study, we developed a new method to deliver a natural substance called quercetin into the brain for the treatment of Alzheimer's disease. Quercetin is known for its health benefits, especially in protecting brain cells. We combined quercetin with a tiny carbon-based material called fullerene, which looks like a soccer ball, to create a new compound called quercetin fullerene conjugate (QFC). This QFC was designed to help quercetin reach the brain more effectively. To make it even better at reaching the brain, we coated QFC with a substance called chitosan. Coating it with chitosan can help to adhere it to nasal cavity for longer time for the delivery of quercetin to the brain. Importantly, our studies showed that this modified form of quercetin did not harm brain cells or the lining of the nose.Overall, our findings suggest that this new approach could be a promising way to develop treatments for Alzheimer's disease.

9.
CNS Neurol Disord Drug Targets ; 22(4): 477-499, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35450536

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is characterized by the presence of aggregated amyloid fibers, neurodegeneration, and loss of memory. Although "Food and Drug Administration" (FDA) approved drugs are available to treat AD, drugs that target AD have limited access to the brain and cause peripheral side effects. These peripheral side effects are the results of exposure of peripheral organs to the drugs. The blood-brain barrier (BBB) is a very sophisticated biological barrier that allows the selective permeation of various molecules or substances. This selective permeation by the BBB is beneficial and protects the brain from unwanted and harmful substances. However, this kind of selective permeation hinders the access of therapeutic molecules to the brain. Thus, a peculiar drug delivery system (nanocarriers) is required. OBJECTIVE: Due to selective permeation of the "blood-brain barrier," nanoparticulate carriers may provide special services to deliver the drug molecules across the BBB. This review article is an attempt to present the role of different nanocarriers in the diagnosis and treatment of Alzheimer's disease. METHODS: Peer-reviewed and appropriate published articles were collected for the relevant information. RESULT: Nanoparticles not only traverse the blood-brain barrier but may also play roles in the detection of amyloid ß, diagnosis, and drug delivery. CONCLUSION: Based on published literature, it could be concluded that nano-particulate carriers may traverse the blood-brain barrier via the transcellular pathway, receptor-mediated endocytosis, transcytosis, and may enhance the bioavailability of drugs to the brain. Hence, peripheral side effects could be avoided.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/uso terapéutico
10.
Drug Deliv Transl Res ; 13(6): 1730-1744, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36641487

RESUMEN

PlK1 has a significant role in the development of breast cancer. Thus, silencing of PlK1 gene may arrest the growth of breast cancer. However, the in vivo stability of PlK1 siRNA after injection remains a challenge to target the specific site. The delivery of siPlK1 RNA via viral vector and amine group-terminated dendrimer is associated with immune reaction and cellular cytotoxicity. Thus, in the present study, hyaluronic acid-functionalized and -thiolated polycaprolactone nanoparticles (SH-HPP NPs) were developed for enhancing the targeting capabilities of siRNA towards human breast cancer cells. NPs displayed size in the range of 180-217 nm, and with sustain and pH-dependent release of siRNA up to 120 h. The in vitro treatments with siRNA-containing NPs showed the high number of necrotic cells and the cell cycle arrest at the G2/M phase. The gene expression analysis depicts the decrease of endogenous PLK1 siRNA expression on MCF-7 cells upon PLK1 NPs treatment. In vitro cytotoxicity experiments demonstrated effective anticancer properties against MCF-7. Finally, in vivo results showed that substantial tumor inhibition was achieved with PLK1 siRNA-containing SH-HPP NPs in comparison of the control group. Hence, HPP NPs have enormous potential for the selective delivery of siRNA, i.e., breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Femenino , Humanos , Línea Celular Tumoral , Ácido Hialurónico , ARN Interferente Pequeño , Quinasa Tipo Polo 1
11.
Drug Discov Today ; 28(12): 103822, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949429

RESUMEN

Despite extensive research, a complete cure remains lacking for most types of cancer. Nanotechnology-based carriers, such as liposomes, nanoparticles (NPs), dendrimers, nanoemulsions, and other nanocarriers, can target cancer cells, but their in vivo fate is unpredictable. Bioinspired quantum dots (BQDs) offer enhanced aqueous solubility, exceptionally low toxicity, biocompatibility, easy biofunctionalization, and selective cancer targeting. Due to their photoluminescence, high longitudinal relaxation value, photothermal effect upon laser irradiation, generation of singlet oxygen, and production of H2S for gas therapy, BQDs are excellent cancer theranostic agents. In this review, we highlight the theranostic application of, and existing challenges relating to BQDs.


Asunto(s)
Nanopartículas , Neoplasias , Puntos Cuánticos , Humanos , Medicina de Precisión , Nanomedicina Teranóstica , Nanopartículas/uso terapéutico , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico
12.
Eur J Pharmacol ; 961: 176117, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37907134

RESUMEN

The risk of neurodegeneration was found to be increased among people with type 2 diabetes mellitus (T2DM). Brain disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and others are considered neurodegenerative diseases and can be characterized by progressive loss of neurons. The deficiency of insulin, impaired signaling, and its resistance lead to alteration in the neuronal functioning of the brain. Insulin degrading enzyme (IDE) plays a significant role in the amyloid ß metabolism, aggregation, and deposition of misfolded proteins in the brain's hippocampal and cortical neuronal regions. The insulin signaling via IP3 activation upregulates the IDE and could be a promising approach to regulate neurodegeneration. The repurposing of existing antidiabetic drugs such as Metformin, DPP-4 inhibitors, thiazolidinediones, glucagon-like peptides (GLP-1), sodium-glucose co-transport-2 (SGCT-2) inhibitors, and insulin could be an alternative and effective strategy to treat neurodegeneration via modulating insulin signaling, insulin resistance, IDE activity, oxidative stress, mitochondrial dysfunction, serum lipid profile and neuroinflammation in the brain. Antidiabetic medications reduce the risk of neuroinflammation, oxidative stress, and Aß deposition by enhancing their clearance rate. The downregulation of IDE alters the degradation of Aß monomers in the Tg2576 APP mice. Also, the treatment with metformin activated the AMPK pathway and suppressed mTOR and BACE-1 protein expression in the APP/PS1-induced mice model. Thus, the primary intention of this review is to explore the link between T2DM and neurodegenerative disorders, and the possible role of various antidiabetic drugs in the management of neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Metformina , Humanos , Ratones , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Péptidos beta-Amiloides/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Reposicionamiento de Medicamentos , Enfermedades Neuroinflamatorias , Enfermedad de Alzheimer/tratamiento farmacológico , Insulina/metabolismo , Metformina/farmacología
13.
Curr Pharm Des ; 29(10): 732-747, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36999427

RESUMEN

Recently, breast cancer has reached the highest incident rate amongst all the reported cancers, and one of its variants, known as triple-negative breast cancer (TNBC), is deadlier compared to the other types of breast cancer due to a lack of feasible diagnostic techniques. Advancements in nanotechnology have paved the way to formulate several nanocarriers with the ability to deliver anticancer drugs effectively and selectively to cancer cells with minimum side effects to non-cancerous cells. Nanotheranostics is a novel approach that can be used in the diagnosis of disease along with therapeutic effects. Currently, various imaging agents, such as organic dyes, radioactive agents, upconversion nanoparticles, various contrasting agents, quantum dots, etc., are being explored for the imaging of internal organs or to examine drug distribution. Furthermore, ligand-targeted nanocarriers, which have the potential to target cancer sites, are being used as advanced agents for cancer theranostic applications, including the identification of various metastatic sites of the cancerous tumor. This review article discusses the need for theranostic application in breast cancer with various imaging techniques, the latest nanotheranostic carriers in breast cancer, and related safety and toxicity issues, as well as highlights the importance of nanotheranostics in breast cancer, which could be helpful in deciphering questions related to nanotheranostic systems.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Nanomedicina Teranóstica/métodos , Antineoplásicos/uso terapéutico , Nanopartículas/uso terapéutico , Portadores de Fármacos , Neoplasias de la Mama Triple Negativas/diagnóstico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
14.
Mol Neurobiol ; 59(8): 4806-4824, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35618981

RESUMEN

The aim of the present review article is to summarize the role of nanodiamonds in various neurological diseases. We have taken related literature of making this review article from ScienceDirect, springer, Research gate, PubMed, Sci-finder, etc. The current approaches for treating neurological conditions such as glioblastoma includes chemotherapy or combination anti-retro viral therapy for HIV (human immunodeficiency virus) or use of anti-Alzheimer drugs during cognitive impairment. These approaches can provide only symptomatic relief as they do not target the cause of the disease due to their inability to penetrate the blood brain barrier. On long-term use, they may cause CNS toxicity due to accumulation in the brain. So nanodiamonds could prove as a promising approach in the brain targeting of the bioactive and to treat many neurological disorders such as Alzheimer's disease, Parkinson's disease, brain tumor (glioblastoma), HIV, amyotrophic multiple sclerosis, Huntington disease, stroke (cerebrovascular attack), batten disease, schizophrenia, epilepsy, and bacterial infections (encephalitis, sepsis, and meningitis) due to their ability to penetrate the blood-brain barrier and owing to their excellent surface properties, i.e., nano size and high surface area, ease of functionalization, multiple drug binding, and biocompatibility; they can be useful for brain targeted drug delivery with minimal side effects.


Asunto(s)
Glioblastoma , Nanodiamantes , Enfermedades del Sistema Nervioso , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos , Glioblastoma/metabolismo , Humanos , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/metabolismo
15.
Expert Opin Drug Deliv ; 19(1): 87-102, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35040728

RESUMEN

INTRODUCTION: The irreversible destruction of neurons, progressive loss of memory and cognitive behavior, high cost of therapy, and impact on society, desire a better, effective, and affordable treatment of AD. The nose-to-brain delivery approach holds great potential to access the brain without any hindrance of BBB and results in higher bioavailability and thus better therapeutic efficacy of anti-AD drugs. AREAS COVERED: The present review article highlights the current facts and worldwide statistics of AD and its detailed etiology. This is followed by barriers to brain delivery, nose-to-brain delivery, their limitations, and amalgamation with various novel carrier systems. We have emphasized recent advancements in nose-to-brain delivery using mucoadhesive, stimuli-responsive carriers, polymeric nanoparticles, lipid nanoparticles, and protein/peptide delivery for treatment of AD. EXPERT OPINION: The available therapies are symptomatic and mitigate the symptoms of AD at the initial stages. In lieu of this, nose-to-brain delivery has the ability to overcome these limitations and increase drug bioavailability in the brain. Various novel strategies including stimuli-responsive systems, nanoparticles, etc. enhance the nasal permeation, protect the drug, and enhance its therapeutic potency. However, successful preclinical data do not assure the clinical success of the therapy, and hence exhaustive clinical investigations are needed to make the therapy available for patients.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas , Enfermedad de Alzheimer/tratamiento farmacológico , Barrera Hematoencefálica , Encéfalo , Sistemas de Liberación de Medicamentos/métodos , Humanos , Liposomas
16.
Curr Pharm Biotechnol ; 23(12): 1460-1482, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34579630

RESUMEN

Burn wounds are complex and intricate injuries that have become a common cause of trauma leading to significant mortality and morbidity every year. Dressings are applied to burn wounds with the aim of promoting wound healing, preventing burn infection and restoring skin function. The dressing protects the injury and contributes to recovery of dermal and epidermal tissues. Polymer-based nanotherapeutics are increasingly being exploited as burn wound dressings. Natural polymers such as cellulose, chitin, alginate, collagen, gelatin and synthetic polymers like poly (lactic-co-glycolic acid), polycaprolactone, polyethylene glycol, and polyvinyl alcohol are being obtained as nanofibers by nanotechnological approaches like electrospinning and have shown wound healing and re-epithelialization properties. Their biocompatibility, biodegradability, sound mechanical properties and unique structures provide optimal microenvironment for cell proliferation, differentiation, and migration contributing to burn wound healing. The polymeric nanofibers mimic collagen fibers present in extracellular matrix and their high porosity and surface area to volume ratio enable increased interaction and sustained release of therapeutics at the site of thermal injury. This review is an attempt to compile all recent advances in the use of polymer-based nanotherapeutics for burn wounds. The various natural and synthetic polymers used have been discussed comprehensively and approaches being employed have been reported. With immense research effort that is currently being invested in this field and development of proper characterization and regulatory framework, future progress in burn treatment is expected to occur. Moreover, appropriate preclinical and clinical research will provide evidence for the great potential that polymer-based nanotherapeutics hold in the management of burn wounds.


Asunto(s)
Quemaduras , Polímeros , Vendajes , Quemaduras/tratamiento farmacológico , Colágeno/metabolismo , Humanos , Nanomedicina , Polímeros/uso terapéutico , Cicatrización de Heridas
17.
Crit Rev Ther Drug Carrier Syst ; 38(4): 39-78, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34369739

RESUMEN

Nanodiamonds (ND) belong to the nano-carbon family, which involves several synthesis, post-synthesis methods, and other modifications for ND preparation. NDs have played vital role both inside and outside of medicine in recent years. The study of NDs has stated in early 1960s, NDs are smaller particles with a size of about 4-5 nm with confined size distribution, large-scale synthesis at lower costs relying on the carbon explosives ignition, apparent surface functional design along with bio-conjugation and extreme biocompatibility. It has been predicted that the ND's magnetic characteristics will contribute to the up-growth of various therapeutic promoters for delivery vehicles, diagnostic probes, gene therapy, tissue scaffolds, anti-bacterial and anti-viral treatments, and devices like nano-robots. Furthermore, the wide applications of biotechnology have displayed the potential usage of NDs in certain bioanalytical needs like fluorescent bio labeling through fluorescent and protein purification of proteins. In this current review, the determination of ND's design, property, classes, constancy, organization, surface modification, biocompatibility, and its applications in the biomedical field have penned. The usage of ND as anti-neoplastic agents and in other health related formulations have displayed exceptional results for future growth. Additionally, NDs provide other functionalities such as production of biodegradable surgical devices of bone, the assassination of drug resistant microbes and viruses, tissue engineering scaffolds, and aids in the delivery of genetic matter into the nucleus of cells.


Asunto(s)
Antineoplásicos , Nanodiamantes , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Ingeniería de Tejidos
18.
Nanomaterials (Basel) ; 11(2)2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562310

RESUMEN

Three-dimensional (3D) printing is gaining numerous advances in manufacturing approaches both at macro- and nanoscales. Three-dimensional printing is being explored for various biomedical applications and fabrication of nanomedicines using additive manufacturing techniques, and shows promising potential in fulfilling the need for patient-centric personalized treatment. Initial reports attributed this to availability of novel natural biomaterials and precisely engineered polymeric materials, which could be fabricated into exclusive 3D printed nanomaterials for various biomedical applications as nanomedicines. Nanomedicine is defined as the application of nanotechnology in designing nanomaterials for different medicinal applications, including diagnosis, treatment, monitoring, prevention, and control of diseases. Nanomedicine is also showing great impact in the design and development of precision medicine. In contrast to the "one-size-fits-all" criterion of the conventional medicine system, personalized or precision medicines consider the differences in various traits, including pharmacokinetics and genetics of different patients, which have shown improved results over conventional treatment. In the last few years, much literature has been published on the application of 3D printing for the fabrication of nanomedicine. This article deals with progress made in the development and design of tailor-made nanomedicine using 3D printing technology.

19.
Drug Discov Today ; 26(12): 2881-2888, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34332094

RESUMEN

Alzheimer's disease (AD) is an irreversible dementia state with characteristic clinical manifestations, including declining cognitive skills and loss of memory, which particularly affects the older population. Despite significant efforts in the field of nano-based drug delivery, there have been few successes achieved in the design of a rational drug therapy. Nanoemulsions (NEs) have potential for the delivery of AD therapeutics owing to their capability for brain drug delivery. Still, there is a long way to go before such therapeutics become a reality in the clinic. In this review, we highlight the preclinical assessment of NEs for AD and discuss the regulatory constraints to their clinical acceptance.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Nanopartículas , Anciano , Enfermedad de Alzheimer/fisiopatología , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Evaluación Preclínica de Medicamentos/métodos , Emulsiones , Humanos , Distribución Tisular
20.
Int J Pharm ; 557: 238-253, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30594688

RESUMEN

The intention of present research work is to formulate usnic acid (UA) loaded heparin modified gellan gum (HAG) nanoparticles (NPs). HAG copolymer based conjugation was synthesized and characterized by 1H NMR and FT-IR spectroscopy. Plain and UA loaded HAG NPs were prepared via nanoprecipitation technique. NPs were typified and further characterized for particle size, polydispersity index, entrapment efficiency, zeta potential, atomic force microscopy, differential scanning calorimetry, X-ray diffraction analysis, and in-vitro release. In-vitro tube formation assay, tumorsphere assay, autophagy assay, DNA cleavage assay, internalization by confocal and FACS based internalization analysis, caspase assay and cell cycle assay were performed for biological activity. Obtained experimental results explored that HAG NPs displayed a sustained release of UA (95.67% in 48 h) compared to gellan gum NPs (96.12% in 8 h). In cytotoxicity studies, UA loaded HAG NPs exhibited an enormous cytotoxic potential against A549 cancer cells. In the in vivo bio-distribution study, using albino rat model the free UA concentration was found 7.09 ±â€¯0.9%, 2.7 ±â€¯1.5%, 7.5 ±â€¯2.1, 9.2 ±â€¯2%, and 6.25 ±â€¯1.3% post two hours of intravenous administration, however, in the case of UA loaded HAG NPs the obtained level was 4.1 ±â€¯1.10, 7.7 ±â€¯1.30%, 2.21 ±â€¯0.29%, 1.85 ±â€¯0.25%, 2.2 ±â€¯0.78%, 2.9 ±â€¯1.21% respectively, in heart, lung, liver, spleen, intestine and kidney. The overall anticancer study and result of internalization deciphered the higher anticancer potential of UA loaded HAG NPs.


Asunto(s)
Adipatos/administración & dosificación , Antineoplásicos/administración & dosificación , Benzofuranos/administración & dosificación , Portadores de Fármacos/administración & dosificación , Heparina/administración & dosificación , Nanopartículas/administración & dosificación , Polisacáridos Bacterianos/administración & dosificación , Células A549 , Adipatos/química , Adipatos/farmacocinética , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptosis/efectos de los fármacos , Benzofuranos/química , Benzofuranos/farmacocinética , Ciclo Celular/efectos de los fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberación de Fármacos , Eritrocitos/efectos de los fármacos , Pruebas Hematológicas , Hemólisis/efectos de los fármacos , Heparina/química , Heparina/farmacocinética , Humanos , Masculino , Nanopartículas/química , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/farmacocinética , Ratas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda