RESUMEN
A novel series of nitrostyrene-based spirooxindoles were synthesized via the reaction of substituted isatins 1a-b, a number of α-amino acids 2a-e and (E)-2-aryl-1-nitroethenes 3a-e in a chemo/regio-selective manner using [3+2] cycloaddition (Huisgen) reaction under microwave irradiation conditions. The structure elucidation of all the synthesized spirooxindoles were done using 1H and 13C NMR and HRMS spectral analysis. The single crystal X-ray crystallographic study of compound 4l was used to assign the stereochemical arrangements of the groups around the pyrrolidine ring in spiro[pyrrolidine-2,3'-oxindoles] skeleton. The in vitro anticancer activity of spiro[pyrrolidine-2,3'-oxindoles] analogs 4a-w against human lung (A549) and liver (HepG2) cancer cell lines along with immortalized normal lung (BEAS-2B) and liver (LO2) cell lines shows promising results. Out of the 23 synthesized spiro[pyrrolidine-2,3'-oxindoles], while five compounds (4c, 4f, 4m, 4q, 4t) (IC50 = 34.99-47.92 µM; SI = 0.96-2.43) displayed significant in vitro anticancer activity against human lung (A549) cancer cell lines, six compounds (4c, 4f, 4k, 4m, 4q, 4t) (IC50 = 41.56-86.53 µM; SI = 0.49-0.99) displayed promising in vitro anticancer activity against human liver (HepG2) cancer cell lines. In the case of lung (A549) cancer cell lines, these compounds were recognized to be more efficient and selective than standard reference artemisinin (IC50 = 100 µM) and chloroquine (IC50 = 100 µM; SI: 0.03). However, none of them were found to be active as compared to artesunic acid [IC50 = 9.85 µM; SI = 0.76 against lung (A549) cancer cell line and IC50 = 4.09 µM; SI = 2.01 against liver (HepG2) cancer cell line].
Asunto(s)
Antifibrinolíticos , Microondas , Humanos , Oxindoles , Hígado , AminoácidosRESUMEN
A highly efficient oxidant-switched palladium-catalyzed regioselective C(sp2)-H/C(sp2)-H cross-dehydrogenative coupling (CDC) for direct mono/bis-ortho-aroylation of substituted 1-phenyl-1H-indazoles 1a-j with various substituted aldehydes 3a-t via C(sp2)-H bond activation has been developed. In this study, Pd-catalyzed chelation-assisted mono- or bis-aroylation of substituted 1-phenyl-1H-indazoles depends on the type of oxidant being used for the CDC reaction. While mono-ortho-aroylation of substituted 1-phenyl-1H-indazole was obtained using dicumylperoxide (DCP) as the oxidant, the bis-ortho-aroylation product has been afforded by the use of tert-butyl hydroperoxide (TBHP). Regardless of the greater activity at the C-3 position of 1H-indazoles, the greater coordinating capacity of the N atom directed the aroylating group to the ortho position, leaving behind the nondirected metalation pathway. The Pd-catalyzed operationally simplified methodology proceeded in the presence of oxidants with either DCP or TBHP in dichloroethane as the solvent at 110 °C for 16 h, which generated a miscellaneous variety of monosubstituted o-benzoyl/acyl-1-aryl-1H-indazoles 4a-t/5a-i and bis-substituted o-benzoyl-1-aryl-1H-indazoles 6a-j in ≤88% yields. The probable mechanistic pathway involves a free radical chelation-assisted approach that could be accomplished by the addition of an in situ-generated oxidant-promoted benzoyl/acyl radical to the ortho position of 1-phenyl-1H-indazoles. A wide range of substrates, a high functional group tolerance, gram-scale synthesis, control/competitive experiments, and a variety of synthetic applications further exemplify the versatility of the developed methodology.
RESUMEN
An efficient, cost-effective, transition-metal-free, oxidative C(sp2)-H/C(sp2)-H cross-dehydrogenative coupling via a C(sp2)-H bond functionalization protocol for the regioselective direct C-3 acylation/benzoylation of substituted 2H-Indazoles 1a-m with substituted aldehydes 2a-q/benzyl alcohols 5a-e/styrenes 6a-e is reported. The operationally simple protocol proceeds in the presence of tert-butyl peroxybenzoate (TBPB) as an oxidant in chlorobenzene (PhCl) as a solvent at 110 °C for 24 h under an inert atmosphere, which furnished a diverse variety of substituted 3-(acyl/benzoyl)-2H-indazoles 3a-q/4a-l in up to 87% yields. The reaction involves a free-radical mechanism and proceeds via the addition of an in situ generated acyl radical (from aldehydes/benzyl alcohols/styrenes) on 2H-indazoles. The functional group tolerance, broad substrate scope, control/competitive experiments and gram-scale synthesis and its application to the synthesis of anti-inflammatory agent 11 and novel indazole-fused diazepine 13 further signify the versatile nature of the developed methodology.
RESUMEN
Drosophila is a valuable paradigm for studying tumorigenesis and cancer. Mutations causing hematopoietic aberrations and melanotic-blood-tumors found in Drosophila mutants are vastly studied. Clear understanding about the blood cells, signaling pathways and the tissues affected during hematopoietic tumor formation provide an opportunity to delineate the effects of cancer therapeutics. Using this simple hematopoietic archetype, we elucidated the effects of the anti-cancer drug, Methotrexate (MTX) on immune responses in two scenarios i.e. against wasp infection and in hematopoietic mutant, hopTum-l. Through this in vivo study we show that MTX impedes the immune responses against wasp infection including the encapsulation response. We further observed that MTX reduces the tumor penetrance in gain-of-function mutants of JAK/STAT pathway, hopTum-l. MTX is anti-inflammatory as it hinders not only the immune responses of acute inflammation as observed after wasp infestation, but also chronic inflammatory responses associated with constitutively activated JAK/STAT pathway mutant (hopTum-l) carrying blood tumors.
Asunto(s)
Drosophila melanogaster/inmunología , Hemocitos/fisiología , Inmunidad/efectos de los fármacos , Metotrexato/farmacología , Avispas/fisiología , Animales , Animales Modificados Genéticamente , Carcinogénesis , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/parasitología , Sistema Hematopoyético , Quinasas Janus/metabolismo , Larva , Mutación/genética , Factores de Transcripción STAT/metabolismo , Transducción de SeñalRESUMEN
MicroRNA (miRNA) plays vital roles in biological processes like RNA splicing and regulation of gene expression. Studies have revealed that there might be possible links between oncogenesis and expression profiles of some miRNAs, due to their differential expression between normal and tumor tissues. However, the automatic classification of miRNAs into different categories by considering the similarity of their expression values has rarely been addressed. This article proposes a solution framework for solving some real-life classification problems related to cancer, miRNA, and mRNA expression datasets. In the first stage, a multiobjective optimization based framework, non-dominated sorting genetic algorithm II, is proposed to automatically determine the appropriate classifier type, along with its suitable parameter and feature combinations, pertinent for classifying a given dataset. In the second page, a stack-based ensemble technique is employed to get a single combinatorial solution from the set of solutions obtained in the first stage. The performance of the proposed two-stage approach is evaluated on several cancer and RNA expression profile datasets. Compared to several state-of-the-art approaches for classifying different datasets, our method shows supremacy in the accuracy of classification.