Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phys Rev Lett ; 132(23): 230404, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38905682

RESUMEN

Quantum speed limits provide upper bounds on the rate with which a quantum system can move away from its initial state. Here, we provide a different kind of speed limit, describing the divergence of a perturbed open system from its unperturbed trajectory. In the case of weak coupling, we show that the divergence speed is bounded by the quantum Fisher information under a perturbing Hamiltonian, up to an error which can be estimated from system and bath timescales. We give three applications of our speed limit. First, it enables experimental estimation of quantum Fisher information in the presence of decoherence that is not fully characterized. Second, it implies that large quantum work fluctuations are necessary for a thermal system to be driven quickly out of equilibrium under a quench. Moreover, it can be used to bound the response to perturbations of expectation values of observables in open systems.

2.
Phys Rev Lett ; 132(21): 210801, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38856242

RESUMEN

Armed with quantum correlations, quantum sensors in a network have shown the potential to outclass their classical counterparts in distributed sensing tasks such as clock synchronization and reference frame alignment. On the other hand, this analysis was done for simple and idealized networks, whereas the correlation shared within a practical quantum network, captured by the notion of network states, is much more complex. Here, we prove a general bound that limits the performance of using quantum network states to estimate a global parameter, establishing the necessity of genuine multipartite entanglement for achieving a quantum advantage. The bound can also serve as an entanglement witness in networks and can be generalized to states generated by shallow circuits. Moreover, while our bound prohibits local network states from achieving the Heisenberg limit, we design a probabilistic protocol that, once successful, attains this ultimate limit of quantum metrology and preserves the privacy of involved parties. Our work establishes both the limitation and the possibility of quantum metrology within quantum networks.

3.
Phys Rev Lett ; 120(15): 150602, 2018 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-29756899

RESUMEN

In thermodynamics, quantum coherences-superpositions between energy eigenstates-behave in distinctly nonclassical ways. Here we describe how thermodynamic coherence splits into two kinds-"internal" coherence that admits an energetic value in terms of thermodynamic work, and "external" coherence that does not have energetic value, but instead corresponds to the functioning of the system as a quantum clock. For the latter form of coherence, we provide dynamical constraints that relate to quantum metrology and macroscopicity, while for the former, we show that quantum states exist that have finite internal coherence yet with zero deterministic work value. Finally, under minimal thermodynamic assumptions, we establish a clock-work trade-off relation between these two types of coherences. This can be viewed as a form of time-energy conjugate relation within quantum thermodynamics that bounds the total maximum of clock and work resources for a given system.

4.
Phys Rev Lett ; 116(16): 160407, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27152781

RESUMEN

Recent results in quantum information theory characterize quantum coherence in the context of resource theories. Here, we study the relation between quantum coherence and quantum discord, a kind of quantum correlation which appears even in nonentangled states. We prove that the creation of quantum discord with multipartite incoherent operations is bounded by the amount of quantum coherence consumed in its subsystems during the process. We show how the interplay between quantum coherence consumption and creation of quantum discord works in the preparation of multipartite quantum correlated states and in the model of deterministic quantum computation with one qubit.

5.
Nat Commun ; 12(1): 1471, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674586

RESUMEN

The classical Gibbs paradox concerns the entropy change upon mixing two gases. Whether an observer assigns an entropy increase to the process depends on their ability to distinguish the gases. A resolution is that an "ignorant" observer, who cannot distinguish the gases, has no way of extracting work by mixing them. Moving the thought experiment into the quantum realm, we reveal new and surprising behaviour: the ignorant observer can extract work from mixing different gases, even if the gases cannot be directly distinguished. Moreover, in the macroscopic limit, the quantum case diverges from the classical ideal gas: as much work can be extracted as if the gases were fully distinguishable. We show that the ignorant observer assigns more microstates to the system than found by naive counting in semiclassical statistical mechanics. This demonstrates the importance of accounting for the level of knowledge of an observer, and its implications for genuinely quantum modifications to thermodynamics.

6.
Nat Commun ; 12(1): 2410, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893281

RESUMEN

The Einstein-Podolsky-Rosen (EPR) paradox plays a fundamental role in our understanding of quantum mechanics, and is associated with the possibility of predicting the results of non-commuting measurements with a precision that seems to violate the uncertainty principle. This apparent contradiction to complementarity is made possible by nonclassical correlations stronger than entanglement, called steering. Quantum information recognises steering as an essential resource for a number of tasks but, contrary to entanglement, its role for metrology has so far remained unclear. Here, we formulate the EPR paradox in the framework of quantum metrology, showing that it enables the precise estimation of a local phase shift and of its generating observable. Employing a stricter formulation of quantum complementarity, we derive a criterion based on the quantum Fisher information that detects steering in a larger class of states than well-known uncertainty-based criteria. Our result identifies useful steering for quantum-enhanced precision measurements and allows one to uncover steering of non-Gaussian states in state-of-the-art experiments.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda