Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Molecules ; 29(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474684

RESUMEN

Implant-associated infections (IAIs) represent a major health burden due to the complex structural features of biofilms and their inherent tolerance to antimicrobial agents and the immune system. Thus, the viable options to eradicate biofilms embedded on medical implants are surgical operations and long-term and repeated antibiotic courses. Recent years have witnessed a growing interest in the development of robust and reliable strategies for prevention and treatment of IAIs. In particular, it seems promising to develop materials with anti-biofouling and antibacterial properties for combating IAIs on implants. In this contribution, we exclusively focus on recent advances in the development of modified and functionalized implant surfaces for inhibiting bacterial attachment and eventually biofilm formation on orthopedic implants. Further, we highlight recent progress in the development of antibacterial coatings (including self-assembled nanocoatings) for preventing biofilm formation on orthopedic implants. Among the recently introduced approaches for development of efficient and durable antibacterial coatings, we focus on the use of safe and biocompatible materials with excellent antibacterial activities for local delivery of combinatorial antimicrobial agents for preventing and treating IAIs and overcoming antimicrobial resistance.


Asunto(s)
Antibacterianos , Incrustaciones Biológicas , Humanos , Antibacterianos/farmacología , Biopelículas , Prótesis e Implantes , Complicaciones Posoperatorias , Materiales Biocompatibles Revestidos/química , Titanio/química
2.
Molecules ; 29(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38893305

RESUMEN

There has been an increase in interest in the application of ω-3 PUFAs, especially EPA and DHA, in the development of various food products owing to their myriad health benefits. However, most fish oils do not contain more than 30% combined levels of EPA and DHA. In this study, through the urea complexation procedure, the production of EPA and DHA concentrate in their free fatty acids (FFAs) form was achieved from an enzymatic oil extracted from common kilka (Clupeonella cultriventris caspia). To gain the maximum value of EPA and DHA, the response surface methodology (RSM), which is an effective tool to categorize the level of independent variables onto the responses of an experimental process, was also used. Different variables including the urea-fatty acids (FAs) ratio (in the range of 2-6, w/w), the temperature of crystallization (in the range of -24-8 °C), and the time of crystallization (in the range of 8-40 h) were investigated by response surface methodology (RSM) for maximizing the EPA and DHA contents. Following the model validation, the levels of the variables at which the maximum desirability function (0.907 score) was obtained for response variables were 5:1 (urea-FAs ratio), -9 °C (the temperature of crystallization), and 24 h (the time of crystallization). Under these optimal conditions, increases of 2.2 and 4.4 times in the EPA and DHA concentrations were observed, respectively, and an increase in the concentrations of EPA and DHA from 5.39 and 13.32% in the crude oil to 12.07 and 58.36% in the ω-3 PUFA concentrates were observed, respectively. These findings indicate that the urea complexation process is efficient at optimizated conditions.


Asunto(s)
Ácidos Grasos Omega-3 , Aceites de Pescado , Urea , Urea/química , Ácidos Grasos Omega-3/química , Aceites de Pescado/química , Ácidos Docosahexaenoicos/química , Ácidos Docosahexaenoicos/análisis , Ácido Eicosapentaenoico/química , Ácido Eicosapentaenoico/análisis , Animales , Cristalización
3.
Molecules ; 27(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35889473

RESUMEN

With the ability to cross biological barriers, encapsulate and efficiently deliver drugs and nucleic acid therapeutics, and protect the loaded cargos from degradation, different soft polymer and lipid nanoparticles (including liposomes, cubosomes, and hexosomes) have received considerable interest in the last three decades as versatile platforms for drug delivery applications and for the design of vaccines. Hard nanocrystals (including gold nanoparticles and quantum dots) are also attractive for use in various biomedical applications. Here, microfluidics provides unique opportunities for the continuous synthesis of these hard and soft nanomaterials with controllable shapes and sizes, and their in situ characterization through manipulation of the flow conditions and coupling to synchrotron small-angle X-ray (SAXS), wide-angle scattering (WAXS), or neutron (SANS) scattering techniques, respectively. Two-dimensional (2D) and three-dimensional (3D) microfluidic devices are attractive not only for the continuous production of monodispersed nanomaterials, but also for improving our understanding of the involved nucleation and growth mechanisms during the formation of hard nanocrystals under confined geometry conditions. They allow further gaining insight into the involved dynamic structural transitions, mechanisms, and kinetics during the generation of self-assembled nanostructures (including drug nanocarriers) at different reaction times (ranging from fractions of seconds to minutes). This review provides an overview of recently developed 2D and 3D microfluidic platforms for the continuous production of nanomaterials, and their simultaneous use in in situ characterization investigations through coupling to nanostructural characterization techniques (e.g., SAXS, WAXS, and SANS).


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Oro , Liposomas/química , Microfluídica , Nanopartículas , Dispersión del Ángulo Pequeño , Sincrotrones , Difracción de Rayos X , Rayos X
4.
J Pharmacol Exp Ther ; 370(3): 581-592, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30940695

RESUMEN

In the blood, depending on their physicochemical characteristics, nanoparticles attract a wide range of plasma biomolecules. The majority of blood biomolecules bind nonspecifically to nanoparticles. On the other hand, biomolecules such as pattern-recognition complement-sensing proteins may recognize some structural determinants of the pristine surface, causing complement activation. Adsorption of nonspecific blood proteins could also recruit natural antibodies and initiate complement activation, and this seems to be a global process with many preclinical and clinical nanomedicines. We discuss these issues, since complement activation has ramifications in nanomedicine stability and pharmacokinetics, as well as in inflammation and disease progression. Some studies have also predicted a role for complement systems in infusion-related reactions, whereas others show a direct role for macrophages and other immune cells independent of complement activation. We comment on these discrepancies and suggest directions for exploring the underlying mechanisms.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Proteínas del Sistema Complemento/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Macrófagos/metabolismo , Nanomedicina/métodos , Animales , Humanos
5.
Langmuir ; 35(24): 7954-7961, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31150248

RESUMEN

pH-responsive lipid nanocarriers have the potential to selectively target the acidic extracellular pH environment of cancer tissues and may further improve the efficacy of chemotherapeutics by minimizing their toxic side-effects. Here, we present the design and characterization of pH-sensitive nano-self-assemblies of the poorly water-soluble anticancer drug 2-hydroxyoleic acid (2OHOA) with glycerol monooleate (GMO). pH-triggered nanostructural transformations from 2OHOA/GMO nanoparticles with an internal inverse hexagonal structure (hexosomes) at pH around 2.0-3.0, via nanocarriers with an internal inverse bicontinuous cubic structure (cubosomes) at pH 2.0-4.5, to vesicles at pH 4.5-7.4 were observed with synchrotron small-angle X-ray scattering, and cryogenic transmission electron microscopy. ζ-potential measurements highlight that the pH-driven deprotonation of the carboxylic group of 2OHOA, and the resulting charge-repulsions at the lipid-water interface account for these nanostructural alterations. The study provides detailed insight into the pH-dependent self-assembly of 2OHOA with GMO in excess buffer at physiologically relevant pH values, and discusses the effects of pH alterations on modulating their nanostructure. The results may guide the further development of pH-responsive anticancer nanocarriers for the targeted delivery of chemotherapeutics to the local microenvironment of tumor cells.


Asunto(s)
Antineoplásicos/química , Nanopartículas/química , Nanoestructuras/química , Ácidos Oléicos/química , Concentración de Iones de Hidrógeno , Agua/química
6.
Phys Chem Chem Phys ; 21(27): 15142-15150, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31243413

RESUMEN

Improvement of pain management strategies after arthroscopic surgery by multimodal analgesia may include the use of long-acting amide local anesthetics. Among these anesthetics, the low molecular weight local anesthetic agent bupivacaine (BUP) is attractive for use in postoperative pain management. However, it has a relatively short duration of action and imposes a higher risk of systemic toxicity at relatively large bolus doses. Bupivacaine encapsulation in lipid-based delivery systems is an attractive strategy for prolonging its local anaesthetic effect and reducing the associated undesirable systemic side effects. Here, we discuss the potential development of liquid crystalline nanocarriers for delivering BUP by using a binary lipid mixture of citrem and soy phosphatidylcholine (SPC) at different weight ratios. The produced safe-by-design family of citrem/SPC nanoparticles is attractive for use in the development of nanocarriers owing to the previously reported hemocompatibility. BUP encapsulation efficiency (EE), depending on the lipid composition, was in the range of 65-77%. In this study, nanoparticle tracking analysis (NTA) and synchrotron small-angle X-ray scattering (SAXS) were employed to gain insight into the effect of BUP solubilization and lipid composition on the size and structural characteristics of the produced citrem/SPC nanodispersions. BUP loading led to a slight change in the mean sizes (diameters) and size distributions of citrem/SPC nanoparticles. However, we found that BUP accommodation into the self-assembled interiors of nanoparticles, triggers significant structural alterations in BUP concentration- and lipid composition-dependent manners, which involve vesicle-cubosome and vesicle-hexosome transitions. The structural tunability of citrem/SPC nanoparticles and the implications for potential applications in intra-articular BUP delivery are discussed.


Asunto(s)
Bupivacaína/química , Bupivacaína/metabolismo , Coloides/química , Nanopartículas/química , Anestésicos Locales/administración & dosificación , Anestésicos Locales/química , Anestésicos Locales/metabolismo , Bupivacaína/administración & dosificación , Sistemas de Liberación de Medicamentos , Solubilidad
7.
Phys Chem Chem Phys ; 21(24): 13005-13013, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31165825

RESUMEN

Cubosomes and hexosomes are emerging platforms for drug and nutraceutical delivery applications. In addition to common high- and low-energy batch emulsification methods for the preparation of these nano-self-assemblies, it is important to introduce suitable microfluidic devices with a precision control of the flow parameters for their continuous production. Microfluidics has several advantages including cost effectiveness, short-production time, and control of the nanoparticle size and size distribution. In the present study, a hydrodynamic flow focusing polyimide microfluidic device was employed for the continuous production of hexosomes based on docosahexaenoic acid monoglyceride (MAG-DHA), in the presence of the stabilizer Pluronic F127. The size, structural, morphological and size characterizations of the continuously produced MAG-DHA nanodispersions were investigated through an integrated approach involving synchrotron small angle X-ray scattering, dynamic light scattering, and cryogenic transmission electron microscopy. We report on a simple process for the microfluidic synthesis of hexosomes with sizes ranging from 108 to 138 nm and relatively narrow size distributions as the polydispersity indices were in the range of 0.14-0.22. At the applied total volumetric flow rates (TFRs) ranging of 50-150 µL min-1 and flow rate ratios (FRRs) of 10-30, it was evident from SAXS findings that ethanol has only a slight effect on the lattice parameter of the internal inverse hexagonal (H2) phase of the produced hexosomes. In addition to hexosomes, cryo-TEM observations indicated the coexistence of vesicular structures and smaller nano-objects. The formation of these nano-objects that are most likely normal micelles was also confirmed by SAXS, particularly on increasing FRR from 10 to 20 or 30 at TFR of 150 µL min-1. Taking into account the reported positive health effects of MAG-DHA, which is a long-chain omega-3 (ω-3) polyunsaturated fatty acid (PUFA) monoglyceride, in various disorders including cancer, the produced hexosomes are attractive for the delivery of ω-3 PUFAs, drugs, nutraceuticals, and their combinations.


Asunto(s)
Ácidos Docosahexaenoicos/química , Ácidos Grasos Omega-3/química , Dispositivos Laboratorio en un Chip , Nanopartículas/química , Hidrodinámica , Micelas , Monoglicéridos/química , Tamaño de la Partícula , Poloxámero/química
8.
Molecules ; 25(1)2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861549

RESUMEN

Owing to their unique structural features, non-lamellar liquid crystalline nanoparticles comprising cubosomes and hexosomes are attracting increasing attention as versatile investigative drug carriers. BACKGROUND: Depending on their physiochemical characteristics, drug molecules on entrapment can modulate and reorganize structural features of cubosomes and hexosomes. Therefore, it is important to assess the effect of guest molecules on broader biophysical characteristics of non-lamellar liquid crystalline nanoparticles, since drug-induced architectural, morphological, and size modifications can affect the biological performance of cubosomes and hexosomes. METHODS: We report on alterations in morphological, structural, and size characteristics of nanodispersions composed from binary mixtures of glycerol monooleate and vitamin E on thymoquinone (a molecule with wide therapeutic potentials) loading. RESULTS: Thymoquinone loading was associated with a slight increase in the mean hydrodynamic nanoparticle size and led to structural transitions from an internal biphasic feature of coexisting inverse cubic Fd3m and hexagonal (H2) phases to an internal inverse cubic Fd3m phase (micellar cubosomes) or an internal inverse micellar (L2) phase (emulsified microemulsions, EMEs). We further report on the presence of "flower-like" vesicular populations in both native and drug-loaded nanodispersions. CONCLUSIONS: These nanodispersions have the potential to accommodate thymoquinone and may be considered as promising platforms for the development of thymoquinone nanomedicines.


Asunto(s)
Benzoquinonas/química , Composición de Medicamentos/métodos , Cristales Líquidos/química , Glicéridos/química , Estructura Molecular , Nanopartículas , Tamaño de la Partícula , Vitamina E/química
9.
Langmuir ; 34(22): 6570-6581, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29768016

RESUMEN

Cisplatin ( cis-diamminedichloroplatinum(II)) is among the most potent cytotoxic agents used in cancer chemotherapy. The encapsulation of cisplatin in lipid-based drug carriers has been challenging owing to its low solubility in both aqueous and lipid phases. Here, we investigated cisplatin encapsulation in nonlamellar liquid-crystalline (LC) nanodispersions formed from a ternary mixture of phytantriol (PHYT), vitamin E (Vit E), and an anionic phospholipid [either phosphatidylglycerol (DSPG) or phosphatidylserine (DPPS)]. We show an increase in cisplatin encapsulation efficiency (EE) in nanodispersions containing 1.5-4 wt % phospholipid. The EE was highest in DPPS-containing nanodispersions (53-98%) compared to DSPG-containing counterparts (25-40%) under similar experimental conditions. Through structural and morphological characterizations involving synchrotron small-angle X-ray scattering and cryogenic transmission electron microscopy, we further show that varying the phospholipid content of cisplatin-free nanodispersions triggers an internal phase transition from a neat hexagonal (H2) phase to a biphasic phase (internal H2 phase coexisting with the lamellar (Lα) phase). However, cisplatin encapsulation in both DPPS- and DSPG-containing nanodispersions generates the coexistence of morphologically different multicompartments in the internal nanostructures comprising vesicles as a core, enveloped by an inverted-type surface bicontinuous cubic Im3 m (primitive, QIIP) phase or H2 phase. We discuss the biophysical basis of these drug-induced morphological alterations and provide insights into the potential development of inverted-type LC nanodispersions for cisplatin delivery.


Asunto(s)
Cisplatino/química , Portadores de Fármacos/química , Cristales Líquidos/química , Nanoestructuras/química , Transición de Fase , Fosfolípidos/química , Difracción de Rayos X
10.
Phys Chem Chem Phys ; 20(37): 23928-23941, 2018 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-30209464

RESUMEN

The attractiveness of new omega-3 (ω-3) polyunsaturated fatty acid (PUFA) monoglycerides (MAGs) lies in the amphiphilic nature and the beneficial health effects as PUFA precursors in various disorders including cancer, pulmonary hypertension, and inflammatory diseases. For exploring the potential therapeutic applications of these new amphiphilic lipids, particularly as main lipid constituents in the development of nanocarriers for delivery of drugs and PUFAs, it is of paramount importance to gain insight into their self-assembly behavior on exposure to excess water. This work describes the structural characteristics of self-assemblies based on two newly synthesized MAGs, namely docosahexaenoic acid (MAG-DHA) and docosapentaenoic acid (MAG-DPA) monoglycerides, on exposure to excess water. We found that both lipids tend to form a dominant inverse hexagonal (H2) phase in excess water at 25 °C and a temperature-triggered structural transition to an inverse micellar solution (L2 phase) is detected similar to that recently reported (A. Yaghmur et al., Langmuir, 2017, 33, 14045-14057) for eicosapentaenoic acid monoglyceride (MAG-EPA). An experimental SAXS structural evaluation study on the temperature-dependent behavior of these new monoglycerides is provided, and the effects of unsaturation degree and fatty acyl chain length on the self-assembled structural features in excess water and on the H2-L2 phase transition temperature are discussed. In addition, hexosomes stabilized by using the triblock copolymer F127 and the food-grade emulsifier citrem were investigated to gain insights into the effects of stabilizer and temperature on the internal nanostructure. These nanoparticles are attractive for use in the development of nanocarriers for delivering drugs and/or nutritional compounds as the beneficial health effects of ω-3 PUFA monoglycerides can be combined with those of loaded therapeutic agents or nutraceuticals.


Asunto(s)
Ácidos Docosahexaenoicos/química , Ácidos Grasos Omega-3/química , Ácidos Grasos Insaturados/química , Monoglicéridos/química , Estructura Molecular
11.
Mol Pharm ; 14(7): 2294-2306, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28497975

RESUMEN

Synthetic mycobacterial cord factor analogues, e.g., trehalose 6,6'-dibehenate (TDB), are highly promising adjuvants due to their strong immunopotentiating capabilities, but their biophysical properties have remained poorly characterized. Here, we report the synthesis of an array of synthetic TDB analogues varying in acyl chain length, degree of acylation, and headgroup display, which was subjected to biophysical characterization of neat nondispersed self-assembled nanostructures in excess buffer and as aqueous dispersions with cationic dimethyldioctadecylammonium (DDA) bromide. The array comprised trehalose mono- (TMX) and diester (TDX) analogues with symmetrically shortened acyl chains [denoted by X: arachidate (A), stearate (S), palmitate (P), myristate (Myr), and laurate (L)] and an analogue with a short hydrophilic polyethylene glycol (PEG) linker inserted between the trehalose headgroup of TDS and the acyl chains (PEG-TDS). All dispersions were liposomes, but in contrast to the colloidally stable and highly cationic TDX-containing liposomes, the zeta-potential was significantly reduced for DDA/TMX and DDA/PEG-TDS liposomes, suggesting a charge-shielding effect, which compromises the colloidal stability. An increased d-spacing was observed for the lamellar phase of neat TDB analogues in excess buffer (TDS < TMS < PEG-TDS), confirming that the charge shielding is caused by an extended molecular configuration of the more flexible headgroup. Differential scanning calorimetry showed highly cooperative phase transitions for all tested dispersions albeit the monoesters destabilized the lipid bilayers. Langmuir experiments demonstrated that incorporation of TDXs and PEG-TDS stabilized DDA monolayers due to improved hydrogen bonding and reduced intermolecular repulsions. In conclusion, data suggest that the DDA/TDS dispersions exhibit favorable physicochemical properties rendering these DDA/TDS liposomes an attractive vaccine adjuvant, and they emphasize that not only the receptor binding and immune activation but also the biophysical properties of immunopotentiator formulations should be collectively considered when designing adjuvants with optimal safety, efficacy, and storage stability.


Asunto(s)
Factores Cordón/química , Glucolípidos/química , Adyuvantes Farmacéuticos/química , Rastreo Diferencial de Calorimetría , Liposomas/química , Mycobacterium/metabolismo , Polietilenglicoles/química , Compuestos de Amonio Cuaternario/química
12.
Langmuir ; 33(49): 14045-14057, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29136473

RESUMEN

Recent studies demonstrated the potential therapeutic use of newly synthesized omega-3 (ω-3) polyunsaturated fatty acid (PUFA) monoglycerides owing to their beneficial health effects in various disorders including cancer and inflammation diseases. To date, the research was mainly focused on exploring the biological effects of these functional lipids. However, to the best of our knowledge, there is no report on the hydration-mediated self assembly of these lipids that leads to the formation of nanostructures, which are attractive for use as vehicles for the delivery of drugs and functional foods. In the present study, we investigated the temperature-composition phase behaviour of eicosapentaenoic acid monoglyceride (MAG-EPA), which is one of the most investigated ω-3 PUFA monoglycerides, during a heating-cooling cycle in the temperature range of 5-60 °C. Experimental synchrotron small-angle X-ray scattering (SAXS) evidence on the formation of a dominant inverse hexagonal (H2) lyotropic liquid crystalline phase and its temperature-induced transition to an inverse micellar solution (L2 phase) is presented for the fully hydrated bulk MAG-EPA system and its corresponding dispersion. We produced colloidal MAG-EPA hexosomes with an internal inverse hexagonal (H2) lyotropic crystalline phase in the presence of F127, a well-known polymeric stabilizer, or citrem, which is a negatively charged food-grade emulsifier. In this work, we report also on the formation of MAG-EPA hexosomes by vortexing MAG-EPA in excess aqueous medium containing F127 at room temperature. This low-energy emulsification method is different than most reported studies in the literature that have demonstrated the need for using a high-energy input during the emulsification step or adding an organic solvent for the formation of such colloidal nonlamellar liquid crystalline dispersions. The designed nanoparticles hold promise for future drug and functional food delivery applications due to their unique structural properties and the potential health-promoting effects of MAG-EPA.

13.
Mol Pharm ; 13(6): 1739-49, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-26654841

RESUMEN

Proteolytically stable α-peptide/ß-peptoid peptidomimetics constitute promising cell-penetrating carrier candidates exhibiting superior cellular uptake as compared to commonly used cell-penetrating peptides (CPPs). The aim of the present study was to explore the potential of these peptidomimetics for delivery of small interfering RNA (siRNA) to the cytosol by incorporation of a palmitoylated peptidomimetic construct into a cationic lipid-based nanocarrier system. The optimal construct was selected on the basis of the effect of palmitoylation and the influence of the length of the peptidomimetic on the interaction with model membranes and the cellular uptake. Palmitoylation enhanced the peptidomimetic adsorption to supported lipid bilayers as studied by ellipsometry. However, both palmitoylation and increased peptidomimetic chain length were found to be beneficial in the cellular uptake studies using fluorophore-labeled analogues. Thus, the longer palmitoylated peptidomimetic was chosen for further formulation of siRNA in a dioleoylphosphatidylethanolamine/cholesteryl hemisuccinate (DOPE/CHEMS) nanocarrier system, and the resulting nanoparticles were found to mediate efficient gene silencing in vitro. Cryo-transmission electron microscopy (cryo-TEM) revealed multilamellar, onion-like spherical vesicles, and small-angle X-ray scattering (SAXS) analysis confirmed that the majority of the lipids in the nanocarriers were organized in lamellar structures, yet coexisted with a hexagonal phase, which is important for efficient nanocarrier-mediated endosomal escape of siRNA ensuring cytosolic delivery. The present work is a proof-of-concept for the use of α-peptides/ß-peptoid peptidomimetics in an efficient delivery system that may be more generally exploited for the intracellular delivery of biomacromolecular drugs.


Asunto(s)
Péptidos de Penetración Celular/química , Portadores de Fármacos/química , Lípidos/química , Membranas/química , Peptidomiméticos/química , Peptoides/química , ARN Interferente Pequeño/química , Línea Celular Tumoral , Ésteres del Colesterol/química , Sistemas de Liberación de Medicamentos/métodos , Silenciador del Gen/fisiología , Células HeLa , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Lipoilación/fisiología , Membranas/metabolismo , Nanopartículas/química , Fosfatidiletanolaminas/química , ARN Interferente Pequeño/administración & dosificación
14.
Mol Pharm ; 13(3): 819-28, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26808484

RESUMEN

In the field of drug delivery to the articular cartilage, it is advantageous to apply artificial tissue models as surrogates of cartilage for investigating drug transport and release properties. In this study, artificial cartilage models consisting of 0.5% (w/v) agarose gel containing 0.5% (w/v) chondroitin sulfate or 0.5% (w/v) hyaluronic acid were developed, and their rheological and morphological properties were characterized. UV imaging was utilized to quantify the transport properties of the following four model compounds in the agarose gel and in the developed artificial cartilage models: H-Ala-ß-naphthylamide, H-Lys-Lys-ß-naphthylamide, lysozyme, and α-lactalbumin. The obtained results showed that the incorporation of the polyelectrolytes chondroitin sulfate or hyaluronic acid into agarose gel induced a significant reduction in the apparent diffusivities of the cationic model compounds as compared to the pure agarose gel. The decrease in apparent diffusivity of the cationic compounds was not caused by a change in the gel structure since a similar reduction in apparent diffusivity was not observed for the net negatively charged protein α-lactalbumin. The apparent diffusivity of the cationic compounds in the negatively charged hydrogels was highly dependent on the ionic strength, pointing out the importance of electrostatic interactions between the diffusant and the polyelectrolytes. Solution based affinity studies between the model compounds and the two investigated polyelectrolytes further confirmed the electrostatic nature of their interactions. The results obtained from the UV imaging diffusion studies are important for understanding the effect of drug physicochemical properties on the transport in articular cartilage. The extracted information may be useful in the development of hydrogels for in vitro release testing having features resembling the articular cartilage.


Asunto(s)
Biomimética , Cartílago Articular/química , Sistemas de Liberación de Medicamentos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Naftalenos/farmacocinética , Animales , Bovinos , Sulfatos de Condroitina/química , Ácido Hialurónico/química , Lactalbúmina/química , Muramidasa/química , Naftalenos/química , Reología , Espectrofotometría Ultravioleta , Electricidad Estática , Ingeniería de Tejidos
15.
Mol Pharm ; 13(8): 2771-81, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27377146

RESUMEN

The mycobacterial cell-wall lipid monomycoloyl glycerol (MMG) is a potent immunostimulator, and cationic liposomes composed of a shorter synthetic analogue (MMG-1) and dimethyldioctadecylammonium (DDA) bromide represent a promising adjuvant that induces strong antigen-specific Th1 and Th17 responses. In the present study, we investigated the supramolecular structure and in vivo adjuvant activity of dispersions based on binary mixtures of DDA and an array of synthetic MMG-1 analogues (MMG-2/3/5/6) displaying longer (MMG-2) or shorter (MMG-3) alkyl chain lengths, or variations in stereochemistry of the polar headgroup (MMG-5) or of the hydrophobic moiety (MMG-6). Synchrotron small-angle X-ray scattering experiments and cryo transmission electron microscopy revealed that DDA:MMG-1/2/5/6 dispersions consisted of unilamellar and multilamellar vesicles (ULVs/MLVs), whereas a coexistence of both ULVs and hexosomes was observed for DDA:MMG-3, depending on the DDA:MMG molar ratio. The studies also showed that ULVs were formed, regardless of the structural characteristics of the neat MMG analogues in excess buffer [lamellar (MMG-1/2/5) or inverse hexagonal (MMG-3/6) phases]. Immunization of mice with a chlamydia antigen surface-adsorbed to DDA:MMG-1/3/6 dispersions revealed that all tested adjuvants were immunoactive and induced strong Th1 and Th17 responses with a potential for a central effector memory profile. The MMG-1 and MMG-6 analogues were equally immunoactive in vivo upon incorporation into DDA liposomes, despite the reported highly different immunostimulatory properties of the neat analogues in vitro, which were attributed to the different nanostructural characteristics. This clearly demonstrates that optimal formulation and delivery of MMG analogues to the immune system is of major importance and challenges the use of in vitro screening assays with nondispersed compounds to identify potential new vaccine adjuvants.


Asunto(s)
Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/síntesis química , Monoglicéridos/química , Compuestos de Amonio Cuaternario/química , Animales , Microscopía por Crioelectrón , Femenino , Liposomas/química , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Nanoestructuras/química
16.
Langmuir ; 32(45): 11907-11917, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27782407

RESUMEN

We present the first report on the effects of hydrostatic pressure on colloidally stabilized lipid nanoparticles enveloping inverse nonlamellar self-assemblies in their interiors. These internal self-assemblies were systematically tuned into bicontinuous cubic (Pn3m and Im3m), micellar cubic (Fd3m), hexagonal (H2), and inverse micellar (L2) phases by regulating the lipid/oil ratio as the hydrostatic pressure was varied from atmospheric pressure to 1200 bar and back to atmospheric pressure. The effects of pressure on these lipid nanoparticles were compared with those on their equilibrium bulk, nondispersed counterparts, namely, inverse nonlamellar liquid-crystalline phases and micellar solutions under excess-water conditions, using the synchrotron small-angle X-ray scattering (SAXS) technique. In the applied pressure range, induced phase transitions were observed solely in fully hydrated bulk samples, whereas the internal self-assemblies of the corresponding lipid nanoparticles displayed only pressure-modulated single phases. Interestingly, both the lattice parameters and the linear pressure expansion coefficients were larger for the self-assemblies enveloped inside the lipid nanoparticles as compared to the bulk states. This behavior can, in part, be attributed to enhanced lipid layer undulations in the lipid particles in addition to induced swelling effects in the presence of the triblock copolymer F127. The bicontinuous cubic phases both in the bulk state and inside lipid cubosome nanoparticles swell on compression, even as both keep swelling further upon decompression at relatively high pressures before shrinking again at ambient pressures. The pressure dependence of the phases is also modulated by the concentration of the solubilized oil (tetradecane). These studies demonstrate the tolerance of lipid nanoparticles [cubosomes, hexosomes, micellar cubosomes, and emulsified microemulsions (EMEs)] for high pressures, confirming their robustness for various technological applications.

17.
Langmuir ; 32(48): 12693-12701, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27934510

RESUMEN

Synthetic analogues of the cell-wall lipid monomycoloyl glycerol (MMG) are promising as next-generation vaccine adjuvants. In the present study, the thermotropic phase behavior of an array of synthetic MMG analogues was examined by using simultaneous small- and wide-angle X-ray scattering under excess water conditions. The MMG analogues differed in the alkyl chain lengths and in the stereochemistry of the polar glycerol headgroup or of the lipid tails (native-like versus alternative compounds). All MMG analogues formed poorly hydrated lamellar phases at low temperatures and inverse hexagonal (H2) phases at higher temperatures prior to melting. MMG analogues with a native-like lipid acid configuration self-assembled into noninterdigitated bilayers whereas the analogues displaying an alternative lipid acid configuration formed interdigitated bilayers in a subgel (Lc') state. This is in contrast to previously described interdigitated phases for other lipids, which are usually in a gel (Lß) state. All investigated MMG analogues displayed an abrupt direct temperature-induced phase transition from Lc' to H2. This transition is ultimately driven by the lipid chain melting and the accompanying change in molecular shape. No intermediate structures were found, but the entire array of MMG analogues displayed phase coexistence during the lamellar to H2 transition. The structural data also showed that the headgroups of the MMG analogues adopting the alternative lipid acid configuration were ordered and formed a two-dimensional molecular superlattice, which was conserved regardless of the lipid tail length. To our knowledge, the MMG analogues with an alternative lipid acid configuration represent the first example of a lipid system showing both interdigitation and superlattice formation, and as such could serve as an interesting model system for future studies. The MMG analogues are also relevant from a subunit vaccine perspective because they are well-tolerated and display promising immunopotentiating activity. The structural characterization described here will serve as a prerequisite for the rational design of nanoparticulate adjuvants with specific and tailored structural features.


Asunto(s)
Pared Celular/química , Membrana Dobles de Lípidos/química , Monoglicéridos/química , Mycobacterium/química , Células Artificiales , Vacunas Bacterianas/química , Tampones (Química) , Electrones , Conformación Molecular , Transición de Fase , Fosfatidilcolinas/química , Dispersión de Radiación , Estereoisomerismo , Temperatura , Termodinámica , Difracción de Rayos X
18.
Langmuir ; 32(35): 8988-98, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27501392

RESUMEN

Water-in-oil (W/O) microemulsions based on either refined olive oil (ROO) or sunflower oil (SO), distilled monoglycerides (DMG), and ethanol were used as nisin carriers in order to ensure its effectiveness as a biopreservative. This work presents experimental evidence on the effects of ethanol concentration, hydration, the nature of oil, and the addition of nisin on the nanostructure of the proposed inverse microemulsions as revealed by electrical conductivity measurements, dynamic light scattering (DLS), small angle X-ray scattering (SAXS), and electron paramagnetic resonance (EPR) spectroscopy. Modeling of representative SAXS profiles was applied to gain further insight into the effects of ethanol and solubilized water content on the inverse swollen micelles' size and morphology. With increasing ethanol content, the overall size of the inverse micelles decreased, whereas hydration resulted in an increase in the micellar size due to the penetration of water into the hydrophilic core of the inverse swollen micelles (hydration-induced swelling behavior). The dynamic properties of the surfactant monolayer were also affected by the nature of the used vegetable oil, the ethanol content, and the presence of the bioactive molecule, as evidenced by EPR spin probing experiments. According to simulation on the experimental spectra, two populations of spin probes at different polarities were revealed. The antimicrobial effect of the encapsulated nisin was evaluated using the well diffusion assay (WDA) technique against Lactococccus lactis. It was found that this encapsulated bacteriocin induced an inhibition of the microorganism growth. The effect was more pronounced at higher ethanol concentrations, but no significant difference was observed between the two used vegetable oils (ROO and SO).


Asunto(s)
Portadores de Fármacos , Etanol/química , Lactococcus lactis/efectos de los fármacos , Nisina/farmacología , Agua/química , Conductividad Eléctrica , Emulsiones , Lactococcus lactis/crecimiento & desarrollo , Micelas , Monoglicéridos/química , Nisina/química , Aceite de Oliva/química , Marcadores de Spin , Aceite de Girasol/química
19.
Langmuir ; 31(18): 5042-9, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25884233

RESUMEN

The inverted-type liquid-crystalline dispersions comprising cubosomes and hexosomes hold much potential for drug solubilization and site-specific targeting on intravenous administration. Limited information, however, is available on the influence of plasma components on nanostructural and morphological features of cubosome and hexosome dispersions, which may modulate their stability in the blood and their overall biological performance. Through an integrated approach involving SAXS, cryo-TEM, and nanoparticle tracking analysis (NTA) we have studied the time-dependent effect of human plasma (and the plasma complement system) on the integrity of the internal nanostructure, morphology, and fluctuation in size distribution of phytantriol (PHYT)-based nonlamellar crystalline dispersions. The results indicate that in the presence of plasma the internal nanostructure undergoes a transition from the biphasic phase (a bicontinuous cubic phase with symmetry Pn3m coexisting with an inverted-type hexagonal (H2) phase) to a neat hexagonal (H2) phase, which decreases the median particle size. These observations were independent of a direct effect by serum albumin and dispersion-mediated complement activation. The implication of these observations in relation to soft nanocarrier design for intravenous drug delivery is discussed.


Asunto(s)
Cristales Líquidos/química , Nanoestructuras/química , Microscopía por Crioelectrón , Portadores de Fármacos/química , Alcoholes Grasos/química , Humanos , Cristales Líquidos/ultraestructura , Nanopartículas/química , Nanopartículas/ultraestructura , Nanoestructuras/ultraestructura
20.
Nanomedicine ; 11(8): 1909-14, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26348655

RESUMEN

Lyotropic non-lamellar liquid crystalline (LLC) aqueous nanodispersions hold a great promise in drug solubilization and delivery, but these nanosystems often induce severe hemolysis and complement activation, which limit their applications for safe intravenous administration. Here, we engineer and characterize LLC aqueous nanodispersions from a binary lipid mixture consisting of 2,3-dihydroxypropyl oleate (glyceryl monooleate) and medium-chain triglycerides with tunable internal nanostructures and improved hemocompatibility controlled by citrem as stabilizer. Citrem, in a concentration-dependent manner, modulates the internal nanostructure of LLC dispersions from a biphasic H2/L2 feature to a neat L2 phase, where the latter resembles "thread-like" swollen micelles. Citrem stabilization totally overcomes hemolysis and complement activation, thus realizing the potential of the engineered LLC aqueous nanodispersions for exploitation in intravenous delivery of drugs and contrast agents. FROM THE CLINICAL EDITOR: The complement system often gets activated after intravenous injection of nano drug-carriers. This may result in detrimental systemic effects. The authors described in this article the use of citrem as a stabilizing agent and showed the ability of this agent to abolish complement activation. Hence, citrem may prove to be an important component of tunable LLC nanocarriers that may be useful in future clinical setting.


Asunto(s)
Ácido Cítrico/análogos & derivados , Portadores de Fármacos/química , Excipientes/química , Glicéridos/química , Nanoestructuras/química , Triglicéridos/química , Ácido Cítrico/efectos adversos , Activación de Complemento/efectos de los fármacos , Portadores de Fármacos/efectos adversos , Esterificación , Excipientes/efectos adversos , Glicéridos/efectos adversos , Humanos , Cristales Líquidos/efectos adversos , Cristales Líquidos/química , Nanoestructuras/efectos adversos , Dispersión del Ángulo Pequeño , Triglicéridos/efectos adversos , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda