Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
PLoS Genet ; 18(2): e1010033, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35143488

RESUMEN

To survive, organisms need to precisely respond to various environmental factors, such as light and gravity. Among these, light is so important for most life on Earth that light-response systems have become extraordinarily developed during evolution, especially in multicellular animals. A combination of photoreceptors, nervous system components, and effectors allows these animals to respond to light stimuli. In most macroscopic animals, muscles function as effectors responding to light, and in some microscopic aquatic animals, cilia play a role. It is likely that the cilia-based response was the first to develop and that it has been substituted by the muscle-based response along with increases in body size. However, although the function of muscle appears prominent, it is poorly understood whether ciliary responses to light are present and/or functional, especially in deuterostomes, because it is possible that these responses are too subtle to be observed, unlike muscle responses. Here, we show that planktonic sea urchin larvae reverse their swimming direction due to the inhibitory effect of light on the cholinergic neuron signaling>forward swimming pathway. We found that strong photoirradiation of larvae that stay on the surface of seawater immediately drives the larvae away from the surface due to backward swimming. When Opsin2, which is expressed in mesenchymal cells in larval arms, is knocked down, the larvae do not show backward swimming under photoirradiation. Although Opsin2-expressing cells are not neuronal cells, immunohistochemical analysis revealed that they directly attach to cholinergic neurons, which are thought to regulate forward swimming. These data indicate that light, through Opsin2, inhibits the activity of cholinergic signaling, which normally promotes larval forward swimming, and that the light-dependent ciliary response is present in deuterostomes. These findings shed light on how light-responsive tissues/organelles have been conserved and diversified during evolution.


Asunto(s)
Movimiento/fisiología , Células Fotorreceptoras/metabolismo , Erizos de Mar/metabolismo , Animales , Cilios/metabolismo , Larva/metabolismo , Luz , Locomoción/fisiología , Músculos/fisiología , Opsinas/genética , Opsinas/metabolismo , Plancton
2.
Dev Growth Differ ; 66(4): 297-304, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38634255

RESUMEN

The update of the draft genome assembly of sea urchin, Hemicentrotus pulcherrimus, which is widely studied in East Asia as a model organism of early development, was performed using Oxford nanopore long-read sequencing. The updated assembly provided ~600-Mb genome sequences divided into 2,163 contigs with N50 = 516 kb. BUSCO completeness score and transcriptome model mapping ratio (TMMR) of the present assembly were obtained as 96.5% and 77.8%, respectively. These results were more continuous with higher resolution than those by the previous version of H. pulcherrimus draft genome, HpulGenome_v1, where the number of scaffolds = 16,251 with a total of ~100 Mb, N50 = 143 kb, BUSCO completeness score = 86.1%, and TMMR = 55.4%. The obtained genome contained 36,055 gene models that were consistent with those in other echinoderms. Additionally, two tandem repeat sequences of early histone gene locus containing 47 copies and 34 copies of all histone genes, and 185 of the homologous sequences of the interspecifically conserved region of the Ars insulator, ArsInsC, were obtained. These results provide further advance for genome-wide research of development, gene regulation, and intranuclear structural dynamics of multicellular organisms using H. pulcherrimus.


Asunto(s)
Genoma , Animales , Genoma/genética , Hemicentrotus/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
3.
Dev Dyn ; 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38071599

RESUMEN

BACKGROUND: Gastrulation is one of the most important events in our lives (Barresi and Gilbert, 2020, Developmental Biology, 12th ed.). The molecular mechanisms of gastrulation in multicellular organisms are not yet fully understood, since many molecular, physical, and chemical factors are involved in the event. RESULTS: Here, we found that one of muscle components, Troponin-I (TnI), is expressed in future gut cells, which are not muscular cells at all, and regulates gastrulation in embryos of a sea urchin, Hemicentrotus pulcherrimus. When we block the function of TnI, the invagination was inhibited in spite that the gut-cell specifier gene is normally expressed. In addition, blocking myosin activity also induced incomplete gastrulation. CONCLUSION: These results strongly suggested that TnI regulates nonmuscular actin-myosin interactions during sea urchin gastrulation. So far, Troponin system is treated as specific only for muscle components, especially for striated muscle, but our data clearly show that TnI is involved in nonmuscular event. It is also reported that recent sensitive gene expression analysis revealed that Troponin genes are expressed in nonmuscular tissues in mammals (Ono et al., Sci Data, 2017;4:170105). These evidences propose the new evolutionary and functional scenario of the involvement of Troponin system in nonmuscular cell behaviors using actin-myosin system in bilaterians including human being.

4.
Dev Dyn ; 251(1): 226-234, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34816532

RESUMEN

BACKGROUND: Precise gastrulation is essential for formation of functional bodies in cnidarians and bilaterians. Previously, by using an alk4/5/7-specific inhibitor, we showed that transforming growth factor-beta (TGF-ß)-alk4/5/7 signaling pathway is important for correct gut bending in sea urchin embryos. However, it is still unclear where functional TGF-ß signals are received in embryos for correct gut bending because details of the spatiotemporal expression pattern of alk4/5/7 have not been reported. RESULTS: We revealed that alk4/5/7 are expressed from the 2-cell to early pluteus stage throughout the entire body, including the invaginating gut. To investigate whether TGF-ß signals directly received in endoderm are required for correct gut bending, we made chimeras in which alk4/5/7 translation was inhibited only in endomesoderm lineage. As a result, the gut of the chimeric embryos did not bend precisely, in contrast to the control chimeras. CONCLUSION: We conclude that direct TGF-ß signaling to the endoderm via alk4/5/7 pathway regulates correct gut bending. However, TGF-ß-alk4/5/7 pathway is not related to mouth opening because the mouth is formed without TGF-ß signaling to the endoderm. This research contributes to understanding the mechanisms leading to the proper positioning of the end of the archenteron for forming a through-gut, which is commonly needed for bilaterians.


Asunto(s)
Gastrulación , Erizos de Mar , Animales , Endodermo , Gástrula , Gastrulación/fisiología , Transducción de Señal/fisiología
5.
Dev Growth Differ ; 64(1): 59-66, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34923630

RESUMEN

Echinoderms, including sea urchins and starfish, have played important roles in cell, developmental and evolutionary biology research for more than a century. However, since most of them take a long time to mature sexually and their breeding seasons are limited, it has been difficult to obtain subsequent generations in the laboratory, resulting in them not being recognized as model organisms in recent genetics research. To overcome this issue, we maintained and obtained gametes from several nonmodel sea urchins in Japan and finally identified Temnopleurus reevesii as a suitable model for sea urchin genetics. Genomic and transcriptomic information was obtained for this model, and the DNA database TrBase was made publicly available. In this review, we describe how we found this species useful for biological research and show an example of CRISPR/Cas9 based knockout sea urchin.


Asunto(s)
Genoma , Erizos de Mar , Animales , Japón , Erizos de Mar/genética
6.
Dev Growth Differ ; 64(4): 210-218, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35451498

RESUMEN

Sea urchins have a long history as model organisms in biology, but their use in genetics is limited because of their long breeding cycle. In sea urchin genetics, genome editing technology was first established in Hemicentrotus pulcherrimus, whose genome has already been published. However, because this species also has a long breeding cycle, new model sea urchins that are more suitable for genetics have been sought. Here, we report a draft genome of another Western Pacific species, Temnopleurus reevesii, which we established as a new model sea urchin recently since this species has a comparable developmental process to other model sea urchins but a short breeding cycle of approximately half a year. The genome of T. reevesii was assembled into 28,742 scaffold sequences with an N50 length of 67.6 kb and an estimated genome size of 905.9 Mb. In the assembled genome, 27,064 genes were identified, 23,624 of which were expressed in at least one of the seven developmental stages. To provide genetic information, we constructed the genome database TrBase (https://cell-innovation.nig.ac.jp/Tree/). We also constructed the Western Pacific Sea Urchin Genome Database (WestPac-SUGDB) (https://cell-innovation.nig.ac.jp/WPAC/) with the aim of establishing a portal site for genetic information on sea urchins in the West Pacific. This site contains genomic information on two species, T. reevesii and H. pulcherrimus, and is equipped with homology search programs for comparing the two datasets. Therefore, TrBase and WestPac-SUGDB are expected to contribute not only to genetic research using sea urchins but also to comparative genomics and evolutionary research.


Asunto(s)
Hemicentrotus , Transcriptoma , Animales , Genoma/genética , Hemicentrotus/genética , Erizos de Mar/genética , Transcriptoma/genética
7.
Proc Natl Acad Sci U S A ; 116(12): 5607-5612, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30833398

RESUMEN

Although morphologies are diverse, the common pattern in bilaterians is for passage of food in the gut to be controlled by nerves and endodermally derived neuron-like cells. In vertebrates, nitric oxide (NO) derived from enteric nerves controls relaxation of the pyloric sphincter. Here, we show that in the larvae of sea urchins, there are endoderm-derived neuronal nitric oxide synthase (nNOS)-positive cells expressing pan-neural marker, Synaptotagmin-B (SynB), in sphincters and that NO regulates the relaxation of the pyloric sphincter. Our results indicate that NO-dependent pylorus regulation is a shared feature within the deuterostomes, and we speculate that it was a characteristic of stem deuterostomes.


Asunto(s)
Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico/metabolismo , Píloro/fisiología , Animales , Evolución Biológica , Evolución Molecular , Larva/fisiología , Neuronas/metabolismo , Píloro/metabolismo , Erizos de Mar/fisiología , Sinaptotagminas
8.
BMC Biol ; 19(1): 64, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33820528

RESUMEN

BACKGROUND: Light is essential for various biological activities. In particular, visual information through eyes or eyespots is very important for most of animals, and thus, the functions and developmental mechanisms of visual systems have been well studied to date. In addition, light-dependent non-visual systems expressing photoreceptor Opsins have been used to study the effects of light on diverse animal behaviors. However, it remains unclear how light-dependent systems were acquired and diversified during deuterostome evolution due to an almost complete lack of knowledge on the light-response signaling pathway in Ambulacraria, one of the major groups of deuterostomes and a sister group of chordates. RESULTS: Here, we show that sea urchin larvae utilize light for digestive tract activity. We found that photoirradiation of larvae induces pyloric opening even without addition of food stimuli. Micro-surgical and knockdown experiments revealed that this stimulating light is received and mediated by Go(/RGR)-Opsin (Opsin3.2 in sea urchin genomes) cells around the anterior neuroectoderm. Furthermore, we found that the anterior neuroectodermal serotoninergic neurons near Go-Opsin-expressing cells are essential for mediating light stimuli-induced nitric oxide (NO) release at the pylorus. Our results demonstrate that the light>Go-Opsin>serotonin>NO pathway functions in pyloric opening during larval stages. CONCLUSIONS: The results shown here will lead us to understand how light-dependent systems of pyloric opening functioning via neurotransmitters were acquired and established during animal evolution. Based on the similarity of nervous system patterns and the gut proportions among Ambulacraria, we suggest the light>pyloric opening pathway may be conserved in the clade, although the light signaling pathway has so far not been reported in other members of the group. In light of brain-gut interactions previously found in vertebrates, we speculate that one primitive function of anterior neuroectodermal neurons (brain neurons) may have been to regulate the function of the digestive tract in the common ancestor of deuterostomes. Given that food consumption and nutrient absorption are essential for animals, the acquirement and development of brain-based sophisticated gut regulatory system might have been important for deuterostome evolution.


Asunto(s)
Luz , Píloro/efectos de la radiación , Erizos de Mar/efectos de la radiación , Animales , Larva/metabolismo , Larva/efectos de la radiación , Píloro/metabolismo , Erizos de Mar/metabolismo
9.
Genesis ; 57(6): e23302, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31025827

RESUMEN

The specification of anterior neuroectoderm is controlled by a highly conserved molecular mechanism in bilaterians. A forkhead family gene, foxQ2, is known to be one of the pivotal regulators, which is zygotically expressed in this region during embryogenesis of a broad range of bilaterians. However, what controls the expression of this essential factor has remained unclear to date. To reveal the regulatory mechanism of foxQ2, we performed cis-regulatory analysis of two foxQ2 genes, foxQ2a and foxQ2b, in a sea urchin Hemicentrotus pulcherrimus. In sea urchin embryos, foxQ2 is initially expressed in the entire animal hemisphere and subsequently shows narrower expression restricted to the anterior pole region. In this study, as a first step to understand the foxQ2 regulation, we focused on the later restricted expression and analyzed the upstream cis-regulatory sequences of foxQ2a and foxQ2b by using the constructs fused to short half-life green fluorescent protein. Based on deletion and mutation analyses of both foxQ2, we identified each of the five regulatory sequences, which were 4-9 bp long. Neither of the regulatory sequences contains any motifs for ectopic activation or spatial repression, suggesting that later mRNA localization is regulated in situ. We also suggest that the three amino acid loop extension-class homeobox gene Meis is involved in the maintenance of foxQ2b, the expression of which is dominant during embryogenesis.


Asunto(s)
Erizos de Mar/embriología , Erizos de Mar/genética , Animales , Tipificación del Cuerpo/fisiología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Placa Neural/embriología , Placa Neural/metabolismo , ARN Mensajero/genética , Proteínas Wnt/metabolismo
10.
Dev Biol ; 444(1): 1-8, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30266259

RESUMEN

Precise body axis formation is an essential step in the development of multicellular organisms, for most of which the molecular gradient and/or specifically biased localization of cell-fate determinants in eggs play important roles. In sea urchins, however, any biased proteins and mRNAs have not yet been identified in the egg except for vegetal cortex molecules, suggesting that sea urchin development is mostly regulated by uniformly distributed maternal molecules with contributions to axis formation that are not well characterized. Here, we describe that the maternal Meis transcription factor regulates anterior-posterior axis formation through maintenance of the most anterior territory in embryos of a sea urchin, Hemicentrotus pulcherrimus. Loss-of-function experiments revealed that Meis is intrinsically required for maintenance of the anterior neuroectoderm specifier foxQ2 after hatching and, consequently, the morphant lost anterior neuroectoderm characteristics. In addition, the expression patterns of univin and VEGF, the lateral ectoderm markers, and the mesenchyme-cell pattern shifted toward the anterior side in Meis morphants more than they did in control embryos, indicating that Meis contributes to the precise anteroposterior patterning by regulating the anterior neuroectodermal fate.


Asunto(s)
Tipificación del Cuerpo/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/fisiología , Animales , Diferenciación Celular , Ectodermo/metabolismo , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Hemicentrotus/embriología , Hemicentrotus/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Placa Neural/metabolismo , Neurogénesis/genética , ARN Mensajero/metabolismo , Erizos de Mar/embriología , Erizos de Mar/genética , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Proteínas Wnt/metabolismo
11.
PLoS Genet ; 12(4): e1006001, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27101101

RESUMEN

When early canonical Wnt is experimentally inhibited, sea urchin embryos embody the concept of a Default Model in vivo because most of the ectodermal cell fates are specified as anterior neuroectoderm. Using this model, we describe here how the combination of orthogonally functioning anteroposterior Wnt and dorsoventral Nodal signals and their targeting transcription factors, FoxQ2 and Homeobrain, regulates the precise patterning of normal neuroectoderm, of which serotonergic neurons are differentiated only at the dorsal/lateral edge. Loss-of-function experiments revealed that ventral Nodal is required for suppressing the serotonergic neural fate in the ventral side of the neuroectoderm through the maintenance of foxQ2 and the repression of homeobrain expression. In addition, non-canonical Wnt suppressed homeobrain in the anterior end of the neuroectoderm, where serotonergic neurons are not differentiated. Canonical Wnt, however, suppresses foxQ2 to promote neural differentiation. Therefore, the three-dimensionally complex patterning of the neuroectoderm is created by cooperative signals, which are essential for the formation of primary and secondary body axes during embryogenesis.


Asunto(s)
Tipificación del Cuerpo/fisiología , Embrión no Mamífero/embriología , Hemicentrotus/embriología , Placa Neural/embriología , Proteína Nodal/metabolismo , Proteínas Wnt/metabolismo , Animales , Tipificación del Cuerpo/genética , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo
12.
Dev Growth Differ ; 60(4): 216-225, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29878318

RESUMEN

During gastrulation, one of the most important morphogenetic events in sea urchin embryogenesis, the gut bends toward the ventral side to form an open mouth. Although the involvement of transforming growth factor-ß (TGF-ß) signals in the cell-fate specification of the ectoderm and endoderm along the dorsal-ventral axis has been well reported, it remains unclear what controls the morphogenetic behavior of gut bending. Here, using two sea urchin species, Hemicentrotus pulcherrimus and Temnopleurus reevesii, we show that TGF-ß signals are required for gut bending toward the ventral side. To search for the common morphogenetic cue in these two species, we initially confirmed the expression patterns of the dorsal-ventral regulatory TGF-ß members, nodal, lefty, bmp2/4, and chordin, in T. reevesii because these factors are appropriate candidates to investigate the cue that starts gut bending, although genetic information about the body axes is entirely lacking in this species. Based on their expression patterns and a functional analysis of Nodal, the dorsal-ventral axis formation of T. reevesii is likely regulated by these TGF-ß members, as in other sea urchins. When the Alk4/5/7 signal was inhibited by its specific inhibitor, SB431542, before the late gastrula stage of T. reevesii, the gut was extended straight toward the anterior tip region, although the ectodermal dorsal-ventral polarity was normal. By contrast, H. pulcherrimus gut bending was sensitive to SB431542 until the prism stage. These data clearly indicate that gut bending is commonly dependent on a TGF-ß signal in sea urchins, but the timing of the response varies in different species.


Asunto(s)
Tipificación del Cuerpo/fisiología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Gastrulación/fisiología , Erizos de Mar , Transducción de Señal/fisiología
13.
Dev Growth Differ ; 60(3): 174-182, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29532461

RESUMEN

To understand the mystery of life, it is important to accumulate genomic information for various organisms because the whole genome encodes the commands for all the genes. Since the genome of Strongylocentrotus purpratus was sequenced in 2006 as the first sequenced genome in echinoderms, the genomic resources of other North American sea urchins have gradually been accumulated, but no sea urchin genomes are available in other areas, where many scientists have used the local species and reported important results. In this manuscript, we report a draft genome of the sea urchin Hemincentrotus pulcherrimus because this species has a long history as the target of developmental and cell biology in East Asia. The genome of H. pulcherrimus was assembled into 16,251 scaffold sequences with an N50 length of 143 kbp, and approximately 25,000 genes were identified in the genome. The size of the genome and the sequencing coverage were estimated to be approximately 800 Mbp and 100×, respectively. To provide these data and information of annotation, we constructed a database, HpBase (http://cell-innovation.nig.ac.jp/Hpul/). In HpBase, gene searches, genome browsing, and blast searches are available. In addition, HpBase includes the "recipes" for experiments from each lab using H. pulcherrimus. These recipes will continue to be updated according to the circumstances of individual scientists and can be powerful tools for experimental biologists and for the community. HpBase is a suitable dataset for evolutionary, developmental, and cell biologists to compare H. pulcherrimus genomic information with that of other species and to isolate gene information.


Asunto(s)
Genoma/genética , Hemicentrotus/genética , Erizos de Mar/genética , Animales , Transcriptoma/genética
15.
Dev Growth Differ ; 57(3): 242-50, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25754419

RESUMEN

Sea urchins are model non-chordate deuterostomes, and studying the nervous system of their embryos can aid in the understanding of the universal mechanisms of neurogenesis. However, despite the long history of sea urchin embryology research, the molecular mechanisms of their neurogenesis have not been well investigated, in part because neurons appear relatively late during embryogenesis. In this study, we used the species Temnopleurus reevesii as a new sea urchin model and investigated the detail of its development and neurogenesis during early embryogenesis. We found that the embryos of T. reevesii were tolerant of high temperatures and could be cultured successfully at 15-30°C during early embryogenesis. At 30°C, the embryos developed rapidly enough that the neurons appeared at just after 24 h. This is faster than the development of other model urchins, such as Hemicentrotus pulcherrimus or Strongylocentrotus purpuratus. In addition, the body of the embryo was highly transparent, allowing the details of the neural network to be easily captured by ordinary epifluorescent and confocal microscopy without any additional treatments. Because of its rapid development and high transparency during embryogenesis, T. reevesii may be a suitable sea urchin model for studying neurogenesis. Moreover, the males and females are easily distinguishable, and the style of early cleavages is intriguingly unusual, suggesting that this sea urchin might be a good candidate for addressing not only neurology but also cell and developmental biology.


Asunto(s)
Técnicas de Cultivo de Embriones/métodos , Modelos Animales , Neurogénesis/fisiología , Erizos de Mar/embriología , Animales , Femenino , Inmunohistoquímica , Masculino , Temperatura
16.
Development ; 138(19): 4233-43, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21852402

RESUMEN

Partitioning ectoderm precisely into neurogenic and non-neurogenic regions is an essential step for neurogenesis of almost all bilaterian embryos. Although it is widely accepted that antagonism between BMP and its inhibitors primarily sets up the border between these two types of ectoderm, it is unclear how such extracellular, diffusible molecules create a sharp and precise border at the single-cell level. Here, we show that Fez, a zinc finger protein, functions as an intracellular factor attenuating BMP signaling specifically within the neurogenic region at the anterior end of sea urchin embryos, termed the animal plate. When Fez function is blocked, the size of this neurogenic ectoderm becomes smaller than normal. However, this reduction is rescued in Fez morphants simply by blocking BMP2/4 translation, indicating that Fez maintains the size of the animal plate by attenuating BMP2/4 function. Consistent with this, the gradient of BMP activity along the aboral side of the animal plate, as measured by pSmad1/5/8 levels, drops significantly in cells expressing Fez and this steep decline requires Fez function. Our data reveal that this neurogenic ectoderm produces an intrinsic system that attenuates BMP signaling to ensure the establishment of a stable, well-defined neural territory, the animal plate.


Asunto(s)
Proteínas Morfogenéticas Óseas/química , Regulación del Desarrollo de la Expresión Génica , Proteínas Smad/metabolismo , Factores de Transcripción/fisiología , Dedos de Zinc , Animales , Blástula/metabolismo , Tipificación del Cuerpo/genética , Linaje de la Célula , Ectodermo/metabolismo , Embrión no Mamífero/metabolismo , Inmunohistoquímica/métodos , Modelos Biológicos , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Erizos de Mar , Factores de Transcripción/genética
17.
Development ; 138(17): 3613-23, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21828090

RESUMEN

Recent studies of the sea urchin embryo have elucidated the mechanisms that localize and pattern its nervous system. These studies have revealed the presence of two overlapping regions of neurogenic potential at the beginning of embryogenesis, each of which becomes progressively restricted by separate, yet linked, signals, including Wnt and subsequently Nodal and BMP. These signals act to specify and localize the embryonic neural fields - the anterior neuroectoderm and the more posterior ciliary band neuroectoderm - during development. Here, we review these conserved nervous system patterning signals and consider how the relationships between them might have changed during deuterostome evolution.


Asunto(s)
Tipificación del Cuerpo/fisiología , Sistema Nervioso/metabolismo , Erizos de Mar/enzimología , Erizos de Mar/metabolismo , Animales , Tipificación del Cuerpo/genética , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteína Nodal/genética , Proteína Nodal/metabolismo , Erizos de Mar/crecimiento & desarrollo , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
18.
Dev Biol ; 363(1): 74-83, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22210002

RESUMEN

Serotonergic neurons differentiate in the neurogenic animal plate ectoderm of the sea urchin embryo. The regulatory mechanisms that control the specification or differentiation of these neurons in the sea urchin embryo are not yet understood, although, after the genome was sequenced, many genes encoding transcription factors expressed in this region were identified. Here, we report that zinc finger homeobox (zfhx1/z81) is expressed in serotonergic neural precursor cells, using double in situ hybridization screening with a serotonergic neural marker, tryptophan 5-hydroxylase (tph) encoding a serotonin synthase that is required for the differentiation of serotonergic neurons. zfhx1/z81 begins to be expressed at gastrula stage in individual cells in the anterior neuroectoderm, some of which also express delta. zfhx1/z81 expression gradually disappears as neural differentiation begins with tph expression. When the translation of Zfhx1/Z81 is blocked by morpholino injection, embryos express neither tph nor the neural marker synaptotagminB in cells of the animal plate, and serotonergic neurons do not differentiate. In contrast, Zfhx1/Z81 morphants do express fez, another neural precursor marker, which appears to function in the initial phase of specification/differentiation of serotonergic neurons. In addition, zfhx1/z81 is one of the targets suppressed in the animal plate by anti-neural signals such as Nodal as well as Delta-Notch. We conclude that Zfhx1/Z81 functions during the specification of individual anterior neural precursors and promotes the expression of tph and synaptotagminB, required for the differentiation of serotonergic neurons.


Asunto(s)
Diferenciación Celular/genética , Genes Homeobox/genética , Hemicentrotus/genética , Neuronas Serotoninérgicas/metabolismo , Dedos de Zinc/genética , Secuencia de Aminoácidos , Animales , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Gástrula/embriología , Gástrula/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hemicentrotus/embriología , Proteínas de Homeodominio/genética , Hibridación in Situ/métodos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Modelos Genéticos , Datos de Secuencia Molecular , Proteína Nodal/genética , Receptores Notch/genética , Homología de Secuencia de Aminoácido , Neuronas Serotoninérgicas/citología , Transducción de Señal/genética , Sinaptotagminas/genética , Triptófano Hidroxilasa/genética
19.
Dev Cell ; 14(1): 97-107, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18194656

RESUMEN

The primary (animal-vegetal) (AV) and secondary (oral-aboral) (OA) axes of sea urchin embryos are established by distinct regulatory pathways. However, because experimental perturbations of AV patterning also invariably disrupt OA patterning and radialize the embryo, these two axes must be mechanistically linked. Here we show that FoxQ2, which is progressively restricted to the animal plate during cleavage stages, provides this linkage. When AV patterning is prevented by blocking the nuclear function of beta-catenin, the animal plate where FoxQ2 is expressed expands throughout the future ectoderm, and expression of nodal, which initiates OA polarity, is blocked. Surprisingly, nodal transcription and OA differentiation are rescued simply by inhibiting FoxQ2 translation. Therefore, restriction of FoxQ2 to the animal plate is a crucial element of canonical Wnt signaling that coordinates patterning along the AV axis with the initiation of OA specification.


Asunto(s)
Tipificación del Cuerpo/fisiología , Embrión no Mamífero/fisiología , Erizos de Mar/embriología , Factores de Transcripción/fisiología , Proteínas Wnt/fisiología , Animales , Ectodermo/crecimiento & desarrollo , Ectodermo/fisiología , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica , ARN Mensajero/genética , Factores de Transcripción/genética , Proteínas Wnt/genética , beta Catenina/fisiología
20.
Front Cell Dev Biol ; 11: 1240767, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37655161

RESUMEN

Acetylcholine, a vital neurotransmitter, plays a multifarious role in the brain and peripheral nervous system of various organisms. Previous research has demonstrated the proximity of cholinergic neurons to serotonergic neurons in the apical organ of sea urchin embryos. While several transcription factors have been identified as playing a role in the development of serotonergic neurons in this region of a sea urchin, Hemicentrotus pulcherrimus, comparatively little is known about the specific transcription factors and their spatiotemporal expression patterns that regulate the development of cholinergic neurons. In this study, we establish the requirement of the transcription factor Rx for the development of cholinergic neurons in the apical organ of the species. Furthermore, we investigate the role of the RNA-binding protein Musashi1, known to be involved in neurogenesis, including cholinergic neurons in other organisms, and demonstrate that it is a downstream factor of Rx, and that choline acetyltransferase expression is suppressed in Musashi1 downregulated embryos. Our research also highlights the intricate network formed by neurons and other cells in and around the apical organ of sea urchin larvae through axons and dendrites, providing possibility for a systematic and complexed neural pattern like those of the brain in other organisms.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda