Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Mol Biol Rep ; 50(3): 2623-2631, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36637620

RESUMEN

Glutamate-cysteine ligase (GCL) is a crucial enzyme involved in the synthesis of glutathione (GSH). Despite various studies on glutathione transferase, and its essential role in detoxification and resistance to oxidative stress, GSH synthesis has not been described in Bombyx mori (silkworms) to date. Silkworms form part of the lepidopterans that are considered as a model of agricultural pests. This study aimed to understand the GSH synthesis by GCL in silkworms, which may help in developing insecticides to tackle agricultural pests. Based on the amino acid sequence and phylogenetic tree, the B. mori GCL belongs to group 2, and is designated bmGCL. Recombinant bmGCL was overexpressed and purified to ensure homogeneity. Biochemical studies revealed that bmGCL uses ATP and Mg2+ to ligate glutamate and cysteine. High expression levels of bmgcl mRNA and GSH were observed in the silkworm fat body after exposure to insecticides and UV-B irradiation. Moreover, we found an increase in bmgcl mRNA and GSH content during pupation in the silkworm fat body. In this study, we characterized the B. mori GCL and analyzed its biochemical properties. These observations indicate that bmGCL might play an important role in the resistance to oxidative stress in the silkworms.


Asunto(s)
Bombyx , Insecticidas , Animales , Glutamato-Cisteína Ligasa/genética , Bombyx/genética , Filogenia , Glutatión/metabolismo , ARN Mensajero/metabolismo
2.
Arch Insect Biochem Physiol ; 112(1): e21979, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36283966

RESUMEN

We studied the effects of green leaf volatiles (including reactive aldehydes) emitted by plants on insects that feed on these plants. The silkworm (Bombyx mori) is a model lepidopteran that eats mulberry leaves. Defense-related enzymes in silkworms can be targeted for developing new pest control methods. The aldo-keto reductase (AKR) superfamily catalyzes aldehyde reduction by converting a carbonyl group into an alcohol group. Here, we characterized a novel silkworm AKR, designated as AKR2E9. Recombinant AKR2E9 was overexpressed in Escherichia coli. The recombinant protein was used, along with nicotinamide adenine dinucleotide phosphate as a coenzyme, to reduce aldehydes present in mulberry (Morus alba) leaves. The catalytic efficiency of AKR2E9 toward various aldehyde substrates and its inhibitor sensitivity was lower than those of AKR2E8. High expression levels of akr2e9 messenger RNA (mRNA) were detected in the midgut and antennae of silkworms. In the antennae of adult silkworms, akr2e9 mRNA was more abundant than akr2e8 mRNA. The catalytic efficiency of AKR2E9 was low because of steric hindrance, due to which its active site is blocked. High expression levels of AKR2E9 in the midgut and antennae suggest that it may regulate the detoxification of toxic aldehydes in silkworms.


Asunto(s)
Bombyx , Morus , Animales , Bombyx/metabolismo , Aldo-Ceto Reductasas/metabolismo , Aldehídos/farmacología , Aldehídos/metabolismo , Morus/química , Morus/genética , Morus/metabolismo , Escherichia coli/genética , ARN Mensajero/metabolismo
3.
Arch Insect Biochem Physiol ; 114(1): e22027, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37283485

RESUMEN

Glutathione (GSH) contributes to redox maintenance and detoxification of various xenobiotic and endogenous substances. γ-glutamyl cyclotransferase (ChaC) is involved in GSH degradation. However, the molecular mechanism underlying GSH degradation in silkworms (Bombyx mori) remains unknown. Silkworms are lepidopteran insects that are considered to be an agricultural pest model. We aimed to examine the metabolic mechanism underlying GSH degradation mediated by B. mori ChaC and successfully identified a novel ChaC gene in silkworms (herein, bmChaC). The amino acid sequence and phylogenetic tree revealed that bmChaC was closely related to mammalian ChaC2. We overexpressed recombinant bmChaC in Escherichia coli, and the purified bmChaC showed specific activity toward GSH. Additionally, we examined the degradation of GSH to 5-oxoproline and cysteinyl glycine via liquid chromatography-tandem mass spectrometry. Quantitative real-time polymerase chain reaction revealed that bmChaC mRNA expression was observed in various tissues. Our results suggest that bmChaC participates in tissue protection via GSH homeostasis. This study provides new insights into the activities of ChaC and the underlying molecular mechanisms that can aid the development of insecticides to control agricultural pests.


Asunto(s)
Bombyx , Animales , Bombyx/genética , Bombyx/metabolismo , Filogenia , Ácido Pirrolidona Carboxílico , Secuencia de Aminoácidos , Glutatión/genética , Glutatión/metabolismo , Mamíferos
4.
Arch Insect Biochem Physiol ; 109(2): e21862, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34897778

RESUMEN

The brown planthopper (Nilaparvata lugens) is a major agricultural pest of rice crops. Analysis of the enzymes produced by N. lugens is important to develop pest-control methods. Superoxide dismutase (SOD) is a detoxification enzyme that catalyzes the conversion of superoxide anions (reactive oxygen species) into oxygen and hydrogen peroxide. As there have been no reports on SOD in N. lugens, in this study, we characterized a new SOD in the brown planthopper, nlSOD1. Amino acid sequence and phylogenetic analyses revealed that nlSOD1 is a member of the Cu/Zn-SOD family. Recombinant nlSOD1, when overexpressed in Escherichia coli, catalyzes the dismutation of superoxide radicals into molecular O2 and H2 O2 . Exposure to various insecticides induced nlSOD1 messenger RNA expression. These results indicate that nlSOD1 may contribute to the insecticide resistance of N. lugens. The findings of this study may assist in the development of novel methods to control the population of N. lugens.


Asunto(s)
Hemípteros , Proteínas de Insectos/genética , Resistencia a los Insecticidas , Superóxido Dismutasa , Animales , Hemípteros/enzimología , Hemípteros/genética , Insecticidas , Filogenia , Superóxido Dismutasa/genética
5.
Arch Insect Biochem Physiol ; 106(1): e21751, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33058282

RESUMEN

D-3-phosphoglycerate dehydrogenase (PHGDH) is a key enzyme involved in the synthesis of l-serine. Despite the high serine content in silk proteins and the crucial role of PHGDH in serine biosynthesis, PHGDH has not been described in silkworms to date. Here, we identified PHGDH in the silkworm Bombyx mori and evaluated its biochemical properties. On the basis of the amino acid sequence and phylogenetic tree, this PHGDH has been categorized as a new type and designated as bmPHGDH. The recombinant bmPHGDH was overexpressed and purified to homogeneity. Kinetic studies revealed that PHGDH uses NADH as a coenzyme to reduce phosphohydroxypyruvate. High expression levels of bmphgdh messenger RNA (mRNA) were observed in the middle part of the silk gland and midgut in a standard strain of silkworm. Moreover, a sericin-deficient silkworm strain displayed reduced expression of bmphgdh mRNA. These findings indicate that bmPHGDH might play a crucial role in the provision of l-serine in the larva of B. mori.


Asunto(s)
Bombyx , Fosfoglicerato-Deshidrogenasa , Serina/biosíntesis , Animales , Bombyx/genética , Bombyx/metabolismo , Expresión Génica , Genes de Insecto , Proteínas de Insectos/metabolismo , Larva/metabolismo , Fosfoglicerato-Deshidrogenasa/análisis , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Filogenia
6.
Biochem Biophys Res Commun ; 521(2): 347-352, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31668810

RESUMEN

We had previously reported a prostaglandin E synthase (bmPGES) in the silkworm Bombyx mori that catalyzes the isomerization of PGH2 to PGE2. The present study aimed to provide a genome-editing characterization of bmPGES in B. mori. Results showed bmPGES gene disruption to result in a reduced content of PGE2. The change affected the expression of chorion genes and egg formation in silkworms. Collectively, the results indicated that bmPGES could be involved in reproduction of B. mori. Therefore, this study provides insights into the physiological role of bmPGES and PGE2 in silkworms.


Asunto(s)
Óvulo/crecimiento & desarrollo , Prostaglandina-E Sintasas/fisiología , Animales , Bombyx , Corion , Dinoprostona/deficiencia , Dinoprostona/fisiología , Edición Génica , Reproducción
7.
Arch Insect Biochem Physiol ; 104(3): e21671, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32227386

RESUMEN

Sulfoconjugation plays a vital role in the detoxification of xenobiotics and in the metabolism of endogenous compounds. In this study, we aimed to identify new members of the sulfotransferase (SULT) superfamily in the silkworm Bombyx mori. Based on amino acid sequence and phylogenetic analyses, two new enzymes, swSULT ST1 and swSULT ST2, were identified that appear to belong to a distinct group of SULTs including several other insect SULTs. We expressed, purified, and characterized recombinant SULTs. While swSULT ST1 sulfated xanthurenic acid and pentachlorophenol, swSULT ST2 exclusively utilized xanthurenic acid as a substrate. Based on these results, and those concerning the tissue distribution and substrate specificity toward pentachlorophenol analyses, we hypothesize that swSULT ST1 plays a role in the detoxification of xenobiotics, including insecticides, in the silkworm midgut and in the induction of gametogenesis in silkworm ovary and testis. Collectively, the data obtained herein contribute to a better understanding of SULT enzymatic functions in insects.


Asunto(s)
Bombyx/enzimología , Inactivación Metabólica , Sulfotransferasas/química , Secuencia de Aminoácidos , Animales , Bombyx/crecimiento & desarrollo , Bombyx/metabolismo , Femenino , Gametogénesis , Tracto Gastrointestinal/enzimología , Proteínas de Insectos , Larva/enzimología , Masculino , Ovario , Pentaclorofenol/metabolismo , Filogenia , Sulfotransferasas/metabolismo , Testículo , Xanturenatos/metabolismo
8.
Arch Insect Biochem Physiol ; 102(1): e21599, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31328816

RESUMEN

A complementary DNA that encodes an omega-class glutathione S-transferase (GST) of the brown planthopper, Nilaparvata lugens (nlGSTO), was isolated by reverse transcriptase polymerase chain reaction. A recombinant protein (nlGSTO) was obtained via overexpression in the Escherichia coli cells and purified. nlGSTO catalyzes the biotransformation of glutathione with 1-chloro-2,4-dinitrobenzene, a general substrate for GST, as well as with dehydroascorbate to synthesize ascorbate. Mutation experiments revealed that putative substrate-binding sites, including Phe28, Cys29, Phe30, Arg176, and Lue225, were important for glutathione transferase and dehydroascorbate reductase activities. As ascorbate is a reducing agent, nlGSTO may participate in antioxidant resistance.


Asunto(s)
Glutatión Transferasa/metabolismo , Hemípteros/enzimología , Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Insectos/metabolismo , Análisis de Secuencia de ADN
9.
Arch Insect Biochem Physiol ; 102(2): e21594, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31298425

RESUMEN

Serine hydroxymethyltransferase (SHMT) catalyzes the interconversion of serine and tetrahydrofolate (THF) to glycine and methylenetetrahydrofolate. cDNA encoding Bombyx mori SHMT (bmSHMT) was cloned and sequenced. The deduced amino acid sequence consisted of 465 amino acids and was found to share homology with other SHMTs. Recombinant bmSHMT was overexpressed in Escherichia coli and purified to homogeneity. The enzyme showed optimum activity at pH 3.0 and 30°C and was stable under acidic conditions. The Km and kcat /Km values for THF in the presence of Nicotinamide adenine dinucleotide phosphate (NADP+ ) were 0.055 mM and 0.081 mM-1 s-1 , respectively, whereas those toward NADP+ were 0.16 mM and 0.018 mM-1 s-1 and toward l-serine were 1.8 mM and 0.0022 mM-1 s-1 , respectively. Mutagenesis experiments revealed that His119, His132, and His135 are important for enzymatic activity. Our results provide insight into the roles and regulation mechanism of one-carbon metabolism in the silkworm B. mori.

10.
Arch Insect Biochem Physiol ; 101(2): e21553, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31004387

RESUMEN

In this study, we identified and characterized a phosphoserine aminotransferase (bmPSAT) from Bombyx mori (B. mori) that is responsible for l-serine biosynthesis. A complementary DNA that encodes bmPSAT was cloned by reverse transcriptase polymerase reaction and sequenced. The presumed amino acid sequence revealed 47-87% identity with known PSATs from insects, humans, plants, and bacteria. Through phylogenetic analysis, we found that bmPSAT is evolutionary related to insect PSATs. Recombinant bmPSAT was produced in Escherichia coli by using a cold-shock promotor and purified to homogeneity. This enzyme utilizes phosphohydroxypyruvate and glutamate for transamination. bmPSAT messenger RNA (mRNA) was expressed at higher levels in several tissues of standard strain silkworm including the silk gland, whereas a sericin-deficient silkworm strain exhibited a diminished expression of bmPSAT mRNA in the silk gland. These findings indicate that bmPSAT may play an important role in synthesizing and supplying l-serine in the larva of B. mori.


Asunto(s)
Bombyx/enzimología , Serina/biosíntesis , Transaminasas/química , Animales , Bombyx/genética , Bombyx/metabolismo , Clonación Molecular , ADN Complementario/genética , Escherichia coli/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/biosíntesis , Proteínas de Insectos/metabolismo , Larva/metabolismo , Filogenia , Proteínas Recombinantes/metabolismo , Transaminasas/genética , Transaminasas/metabolismo
11.
J Insect Sci ; 19(5)2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31606747

RESUMEN

Glutathione conjugation is a crucial step in xenobiotic detoxification. In the current study, we have functionally characterized an epsilon-class glutathione S-transferase (GST) from a brown planthopper Nilaparvata lugens (nlGSTE). The amino acid sequence of nlGSTE revealed approximately 36-44% identity with epsilon-class GSTs of other species. The recombinant nlGSTE was prepared in soluble form by bacterial expression and was purified to homogeneity. Mutation experiments revealed that the putative substrate-binding sites, including Phe107, Arg112, Phe118, and Phe119, were important for glutathione transferase activity. Furthermore, inhibition study displayed that nlGSTE activity was affected by insecticides, proposing that, in brown planthopper, nlGSTE could recognize insecticides as substrates.


Asunto(s)
Glutatión Transferasa/metabolismo , Hemípteros/enzimología , Secuencia de Aminoácidos , Animales , Escherichia coli , Glutatión Transferasa/química , Glutatión Transferasa/efectos de los fármacos , Glutatión Transferasa/genética , Hemípteros/genética , Inactivación Metabólica , Insecticidas/farmacología , Mutagénesis Sitio-Dirigida
12.
Artículo en Inglés | MEDLINE | ID: mdl-29235695

RESUMEN

Two cDNAs encoding glutathione S-transferase (GST) of the tobacco cutworm, Spodoptera litura, were cloned by reverse transcriptase-polymerase chain reaction. The deduced amino acid sequences of the resulting clones revealed 32-51% identities to the epsilon-class GSTs from other organisms. The recombinant proteins were functionally overexpressed in Escherichia coli cells in soluble form and were purified to homogeneity. The enzymes were capable of catalyzing the bioconjugation of glutathione with 1-chloro-2,4-dinitrobenzene, 1,2-epoxy-3-(4-nitrophenoxy)-propane, and ethacrynic acid. A competition assay revealed that the GST activity was inhibited by insecticides, suggesting that it could be conducive to insecticide tolerance in the tobacco cutworm.


Asunto(s)
Glutatión Transferasa/metabolismo , Spodoptera/enzimología , Animales , Glutatión Transferasa/química , Glutatión Transferasa/genética , Glutatión Transferasa/aislamiento & purificación , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/aislamiento & purificación , Proteínas de Insectos/metabolismo , Filogenia , Análisis de Secuencia de ADN
13.
Biochemistry ; 56(46): 6125-6136, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29064674

RESUMEN

Following a previous detailed investigation of the ß subunit of α2ß2 human adult hemoglobin (Hb A), this study focuses on the α subunit by using three natural valency hybrid α(Fe2+-deoxy/O2)ß(Fe3+) hemoglobin M (Hb M) in which O2 cannot bind to the ß subunit: Hb M Hyde Park (ß92His → Tyr), Hb M Saskatoon (ß63His → Tyr), and Hb M Milwaukee (ß67Val → Glu). In contrast with the ß subunit that exhibited a clear correlation between O2 affinity and Fe2+-His stretching frequencies, the Fe2+-His stretching mode of the α subunit gave two Raman bands only in the T quaternary structure. This means the presence of two tertiary structures in α subunits of the α2ß2 tetramer with T structure, and the two structures seemed to be nondynamical as judged from terahertz absorption spectra in the 5-30 cm-1 region of Hb M Milwaukee, α(Fe2+-deoxy)ß(Fe3+). This kind of heterogeneity of α subunits was noticed in the reported spectra of a metal hybrid Hb A like α(Fe2+-deoxy)ß(Co2+) and, therefore, seems to be universal among α subunits of Hb A. Unexpectedly, the two Fe-His frequencies were hardly changed with a large alteration of O2 affinity by pH change, suggesting no correlation of frequency with O2 affinity for the α subunit. Instead, a new Fe2+-His band corresponding to the R quaternary structure appeared at a higher frequency and was intensified as the O2 affinity increased. The high-frequency counterpart was also observed for a partially O2-bound form, α(Fe2+-deoxy)α(Fe2+-O2)ß(Fe3+)ß(Fe3+), of the present Hb M, consistent with our previous finding that binding of O2 to one α subunit of T structure α2ß2 tetramer changes the other α subunit to the R structure.


Asunto(s)
Hemoglobina M/química , Subunidades de Hemoglobina/química , Hemoglobinas Anormales/química , Oxígeno/metabolismo , Hemoglobina M/metabolismo , Subunidades de Hemoglobina/metabolismo , Hemoglobinas Anormales/metabolismo , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Multimerización de Proteína , Espectrometría Raman , Espectroscopía de Terahertz
14.
Biochem Biophys Res Commun ; 492(2): 166-171, 2017 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-28803983

RESUMEN

Prostaglandins are involved in many physiological processes, and prostaglandin synthases facilitate the detoxification of xenobiotics as well as endogenous compounds, such as through glutathione conjugation. Specifically, prostaglandin D synthase (PGDS) catalyzes the isomerization of PGH2 to PGD2. Here we report the identification and structural analysis of PGDS from the brown planthopper rice pest Nilaparvata lugens (nlPGDS), which belongs to the sigma-class glutathione transferases. The structure of nlPGDS in complex with glutathione was determined at a resolution of 2.0 Å by X-ray crystallography. Bound glutathione was localized to the glutathione-binding site (G-site). Enzyme activity measurements following site-directed mutagenesis of nlPGDS indicated that amino acid residues Tyr8, Leu14, Trp39, Lys43, Gln50, Val51, Gln63, and Ser64 in the G-site contribute to its catalytic activity. To our knowledge, this represents the first report of a PGDS in insects. Our findings provide insights into the mechanism of nlPGDS activity and potentially that of other insects and therefore may facilitate the development of more effective and safe insecticides.


Asunto(s)
Glutatión/metabolismo , Hemípteros/enzimología , Oxidorreductasas Intramoleculares/química , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/química , Lipocalinas/metabolismo , Animales , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Hemípteros/química , Hemípteros/metabolismo , Modelos Moleculares , Oryza/parasitología , Conformación Proteica
15.
Biochem Biophys Res Commun ; 474(1): 104-110, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-27103441

RESUMEN

We report a new member of the aldo-keto reductase (AKR) superfamily in the silkworm Bombyx mori. Based on its amino acid sequence, the new enzyme belongs to the AKR2 family and was previously assigned the systematic name AKR2E5. In the present study, recombinant AKR2E5 was expressed, purified to homogeneity, and characterized. The X-ray crystal structures were determined at 2.2 Å for the apoenzyme and at 2.3 Å resolution for the NADPH-AKR2E5 complex. Our results demonstrate that AKR2E5 is a 40-kDa monomer and includes the TIM- or (ß/α)8-barrel typical for other AKRs. We found that AKR2E5 uses NADPH as a cosubstrate to reduce carbonyl compounds such as DL-glyceraldehyde, xylose, 3-hydroxy benzaldehyde, 17α-hydroxy progesterone, 11-hexadecenal, and bombykal. No NADH-dependent activity was detected. Site-directed mutagenesis of AKR2E5 indicates that amino acid residues Asp70, Tyr75, Lys104, and His137 contribute to catalytic activity, which is consistent with the data on other AKRs. To the best of our knowledge, AKR2E5 is only the second AKR characterized in silkworm. Our data should contribute to further understanding of the functional activity of insect AKRs.


Asunto(s)
Aldehído Reductasa/química , Aldehído Reductasa/ultraestructura , Bombyx/enzimología , NADP/química , Aldo-Ceto Reductasas , Secuencia de Aminoácidos , Animales , Sitios de Unión , Activación Enzimática , Datos de Secuencia Molecular , NADP/ultraestructura , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
16.
Opt Express ; 24(23): 26175-26185, 2016 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-27857354

RESUMEN

We present the use of a "double optical pump" technique in terahertz time-domain emission spectroscopy as an alternative method to investigate the lifetime of photo-excited carriers in semiconductors. Compared to the commonly employed optical pump-probe transient photo-reflectance, this non-contact and room temperature characterization technique allows relative ease in achieving optical alignment. The technique was implemented to evaluate the carrier lifetime in low temperature-grown gallium arsenide (LT-GaAs). The carrier lifetime values deduced from "double optical pump" THz emission decay curves show good agreement with data obtained from standard transient photo-reflectance measurements on the same LT-GaAs samples grown at 250 °C and 310 °C.

17.
Opt Express ; 24(22): 24980-24988, 2016 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-27828438

RESUMEN

Terahertz (THz) wave detection and emission via Cherenkov-phase-matched nonlinear optical effects at 1.55-µm optical wavelength were demonstrated using a GaAs with metal-coating (M-G-M) and bare GaAs as a reference sample in conjunction with a metallic tapered parallel-plate waveguide (TPPWG). The metal-coated GaAs is superior to the bare wafer both as a THz electro-optic detector and as an emitter. Significant improvements in the detection and emission efficiency were obtained by utilizing a metal-coating due to better confinement and lower loss of the THz waves propagating in the M-G-M compared with bare GaAs.

18.
Opt Express ; 23(11): 14532-40, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26072813

RESUMEN

We present experimental demonstration of photocarrier dynamics in InAs quantum dots (QDs) via terahertz (THz) time-domain spectroscopy (TDS) using two excitation wavelengths and observing the magnetic field polarity characteristics of the THz signal. The InAs QDs was grown using standard Stranski-Krastanow technique on semi-insulating GaAs substrate. Excitation pump at 800 nm- and 910 nm-wavelength were used to distinguish THz emission from the InAs/GaAs matrix and InAs respectively. THz-TDS at 800 nm pump revealed intense THz emission comparable to a bulk p-InAs. For 910 nm pump, the THz emission generally weakened and upon applying external magnetic field of opposite polarities, the THz time-domain plot exhibited anomalous phase-shifting. This was attributed to the possible current-surge associated with the permanent dipole in the QD.

19.
Arch Biochem Biophys ; 566: 36-42, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25497345

RESUMEN

Glutathione transferases (GSTs) are a major class of detoxification enzymes that play a central role in the defense against environmental toxicants and oxidative stress. Here, we studied the crystal structure of a delta-class glutathione transferase from Nilaparvata lugens, nlGSTD, to gain insights into its catalytic mechanism. The structure of nlGSTD in complex with glutathione, determined at a resolution of 1.7Å, revealed that it exists as a dimer and its secondary and tertiary structures are similar to those of other delta-class GSTs. Analysis of a complex between nlGSTD and glutathione showed that the bound glutathione was localized to the glutathione-binding site. Site-directed mutagenesis of nlGSTD mutants indicated that amino acid residues Ser11, His52, Glu66, and Phe119 contribute to catalytic activity.


Asunto(s)
Glutatión Transferasa/química , Glutatión/química , Hemípteros/química , Proteínas de Insectos/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Hemípteros/enzimología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Relación Estructura-Actividad
20.
Biosci Biotechnol Biochem ; 79(6): 989-91, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25608724

RESUMEN

Glutathione transferases (GSTs) are major detoxification enzymes that play central roles in the defense against various environmental toxicants as well as oxidative stress. Here, we identify amino acid residues of an unclassified GST from Bombyx mori, bmGSTu-interacting glutathione (GSH). Site-directed mutagenesis of bmGSTu mutants indicated that amino acid residues Asp103, Ser162, and Ser166 contribute to catalytic activity.


Asunto(s)
Bombyx/enzimología , Dominio Catalítico , Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Animales , Glutatión/metabolismo , Glutatión Transferasa/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda