Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Prosthet Dent ; 131(2): 331.e1-331.e7, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37978005

RESUMEN

STATEMENT OF PROBLEM: Despite studies focusing on the accuracy and dimensional stability of additive manufacturing, research on the impact of storage conditions on these properties of 3-dimensional (3D) printed objects is lacking. PURPOSE: The purpose of this in vitro study was to investigate the influence of storage temperature on the dimensional stability of digital light processing (DLP) printed casts and to determine how different locations in printed casts react differently. MATERIAL AND METHODS: A completely dentate maxillary typodont model was digitized with a desktop laser scanner. The typodont was subsequently modified with a software program by adding cuboids with a side length of 3 mm on both maxillary central incisors, first molars, and second molars. The file was saved in the standard tessellation language (STL) format. The modified digitized typodont was then processed through the DLP technology printing process with a desktop DLP printer and photopolymerizing resin. The casts were printed 32 times and stored in sealed plastic bags, shielded from light, and subjected to 4 different temperature conditions (-20 °C, 4 °C, 20 °C, and 37 °C, n=8 each). The cuboids on the central incisors were labeled as the P1 group, first molars as the P2 group, and second molars as the P3 group. The distance between the cuboids was measured 5 times, with results recorded immediately after cast production and at 1, 2, 3, 5, 7, 14, and 28 days after. Repeated analysis of variance (ANOVA) and the Tukey honestly significant difference (HSD) test were used to compare the recorded values among the groups (α=.05). RESULTS: In the P1 group, the casts stored at -20 °C exhibited the smallest overall size change, with a mean ±standard deviation volume of 99.42 ±0.04% compared with the original casts after 28 days of storage. This was followed by the casts stored at 4 °C, 20 °C, and 37 °C, with remaining volumes of 99.39 ±0.06% (P=.139), 99.14 ±0.08% (P<.001), and 98.96 ±0.03% (P<.001), respectively. For the P2 and P3 groups, casts stored at 4 °C retained the most volume at 99.82 ±0.01%, whereas those stored at -20 °C, 20 °C, and 37 °C underwent greater changes, with remaining volumes of 99.66 ±0.03%, 100.32 ±0.02%, and 100.44 ±0.02%, respectively (P<.001). The P3 group exhibited a similar trend to that of the P2 group, with the casts stored at 4 °C remaining closest to the original dimensions at 99.86 ±0.02%, while casts stored at -20 °C showed 99.73 ±0.03% of the original volume and those stored at 20 °C and 37 °C expanded with volumes of 100.37 ±0.03% and 100.48 ±0.03%, respectively (P<.001). CONCLUSIONS: DLP printed casts stored at 4 °C exhibited the greatest overall dimensional stability, followed sequentially by those stored at -20 °C, 20 °C, and 37 °C. Additionally, the study confirmed that the posterior and anterior teeth regions of DLP printed casts respond differently to different storage temperatures.


Asunto(s)
Diseño Asistido por Computadora , Técnica de Impresión Dental , Temperatura , Modelos Dentales , Programas Informáticos , Impresión Tridimensional
2.
J Prosthet Dent ; 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37604753

RESUMEN

Polyetheretherketone (PEEK) has become popular for removable partial denture (RPD) frameworks but reports on their clinical follow-up and repair are lacking. Two defective PEEK-framework RPDs were repaired with computer-aided design and manufacturing technology, saving costs and time and simplifying the treatment process.

3.
J Prosthet Dent ; 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36357192

RESUMEN

STATEMENT OF PROBLEM: The accuracy and optimal dimensions of computer numerical control (CNC)-milled polyetheretherketone (PEEK) removable partial denture (RPD) clasps are unclear. PURPOSE: The purpose of this in vitro study was to investigate the trueness and precision of CNC-milled PEEK clasps with different thicknesses and lengths. MATERIAL AND METHODS: Ladder-shaped specimens of 2 thicknesses with 5 lengths of clasps were designed and milled with PEEK and commercially pure titanium (CP Ti) (n=6). All milled specimens were scanned and superimposed onto the design data. Three-dimensional and 2-dimensional deviation analyses were carried out to evaluate the trueness of milled PEEK clasps. The scanning data of each group were superimposed pairwise, and the 3-dimensional deviations were analyzed to evaluate the precision. Nonparametric tests, ANOVA, the Pearson correlation, and univariate linear regression were used for statistical analysis (α=.05). RESULTS: The deviation of trueness of the PEEK clasps (0.047 to 0.164 mm) was higher than that of the CP Ti clasps (0.037 to 0.060 mm) (P<.001). Increasing the length of the clasps increased the deviations (P<.001). Deviation in the 2 thicknesses was not significantly different (P=.210). The correlation coefficients of 1.0-mm-thick and 1.5-mm-thick PEEK and CP Ti clasps were 0.843, 0.794, 0.638, and 0.405. The positive correlation coefficients of PEEK were higher than those of CP Ti and those of 1.0-mm-thick clasps was higher than those of 1.5-mm-thick clasps. The deviations were evenly distributed in the 9-mm length of the clasp for CP Ti and in the 6-mm length of the clasp for PEEK. Beyond these lengths, deviations increased with increased length. The increasing amplitude of CP Ti was smaller than that of the PEEK group, and that of the 1.5-mm-thick clasp was smaller than that of the1.0-mm-thick clasp. The measured range of precision of PEEK clasps was 0.079 to 0.152 mm, while that of CP Ti clasps was 0.036 to 0.096 mm. CP Ti clasps tended to have better precision than PEEK clasps, except for the 1.0-mm-thick clasps with a length greater than 9 mm and the 1.5-mm-thick clasp with a 12-mm length. The correlation of the clasp length with precision showed that the lengths of 1.0-mm-thick clasps strongly influenced precision (PEEK, P=.020; CP Ti, P<.001); this correlation decreased sharply when the thickness of clasps was 1.5 mm (PEEK, P=.199; CP Ti, P=.107). CONCLUSIONS: Greater elasticity increased the deviations of milled clasps. The increased thickness helped the clasp remain stable during the milling process. The 1.5-mm-thick PEEK clasps in the 3-mm and 6-mm lengths were the optimal design tested.

4.
Nanotechnology ; 29(25): 255403, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29616979

RESUMEN

In order to develop energy storage devices with high power performance, electrodes should hold well-defined pathways for efficient ionic and electronic transport. Herein, we demonstrate a highly conductive graphene nanosheet/nanometer-sized carbide-derived carbon framework (hcGNS/nCDC). In this architecture, nCDC possesses short transport paths for electrolyte ions, thus ensuring the rapid ions transportation. The excellent electrical conductivity of hcGNS can reduce the electrode internal resistance for the supercapacitor and thus endows the hcGNS/nCDC composite electrodes with excellent electronic transportation performance. Electrochemical measurements show that the cyclic voltammogram of hcGNS/nCDC can maintain a rectangular-like shape with the increase of the scan rate from 5 mV s-1 to 20 V s-1, and the specific capacitance retention is up to 51% even at a high scan rate of 20 V s-1, suggesting ultrahigh power performance, which, to the best of our knowledge, is among the best power performances reported so far for the carbon materials. Furthermore, the hcGNS/nCDC composite also shows an excellent cycling stability (no drop in its capacitance occurs even after 10000 cycles). This work demonstrates the advantage in the ultrahigh power performance for the framework having both short transport pathways for electrolyte ions and high electrical conductivity.

5.
Front Chem ; 9: 740447, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631663

RESUMEN

During the friction process, the polytetrafluoroethylene (PTFE) adhered on the counterpart surface was known as the PTFE transfer film, which was fundamental to the lubricating performance of the PTFE. However, the adhesive interaction between the iron surface and the adhered PTFE transfer film is still unclear. In present study, molecular dynamics simulations were used to reveal the adhesive interaction between the iron surface and PTFE transfer film. Based on the atomic trajectories obtained through the molecular dynamics, the interaction energy, concentration profile, radial distribution function, and mean square displacement were calculated to analyze the structure of the interface. The negative values of the interaction energy demonstrated the adhesive interaction between the PTFE transfer film and Fe surfaces, resulting in the accumulation of the PTFE transfer film on the Fe surface. Among the (100) (110), and (111) surfaces of α-Fe (110) surface owns the strongest adhesive interaction with the PTFE transfer film. Compared with the original PTFE molecule, the chain broken PTFE, hydroxyl substituted PTFE, and carbonyl substituted PTFE exhibited stronger adhesive interaction with Fe surface. The adhesive interaction between the PTFE transfer film and Fe surfaces was mainly originated from the Fe atoms and the F atoms of the adsorbate PTFE transfer film, which was governed by the van der Waals force. The bonding distance between the Fe atom and the F atom of the adsorbate PTFE transfer film is around 2.8 Å. Moreover, the chain broken of PTFE molecule and the rise of temperature can remarkably increase the mobility of polymer chains in the interface system.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda