Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Biomacromolecules ; 25(6): 3596-3606, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38754095

RESUMEN

Poly(vinyl alcohol)s (PVAs) are very popular dispersants for the construction of colloids and common shell-constituents of microcapsules but remain mostly unexplored as building blocks for the design of nanocapsules through nanoprecipitation or other processes. Herein, we first show that model commercial PVAs and oils can be concomitantly engaged in solvent-shifting procedures to give rise to oil-filled nanocapsules in one step. Next, we report the synthesis of precisely defined water-soluble glyco-PVAs by reversible addition-fragmentation chain transfer (RAFT) copolymerization of 6-O-vinyladipoyl-d-glucopyranose and vinyl chloroacetate and selective alcoholysis reactions. We finally demonstrate that these glycopolymers are excellent candidates for the straightforward conception of oil- and drug-filled, surface- and/or core-tagged, stealth, and degradable nanocapsules by nanoprecipitation.


Asunto(s)
Nanocápsulas , Alcohol Polivinílico , Nanocápsulas/química , Alcohol Polivinílico/química , Polimerizacion , Precipitación Química
2.
Small ; 19(21): e2206426, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36840673

RESUMEN

Nanomedicines confront various complicated physiological barriers limiting the accumulation and deep penetration in the tumor microenvironment, which seriously restricts the efficacy of antitumor therapy. Self-propelled nanocarriers assembled with kinetic engines can translate external energy into orientated motion for tumor penetration. However, achieving a stable ultrafast permeability at the tumor site remains challenging. Here, sub-200 nm photoactivated completely organic nanorockets (NRs), with asymmetric geometry conveniently assembled from photothermal semiconducting polymer payload and thermo-driven macromolecular propulsion through a straightforward nanoprecipitation process, are presented. The artificial NRs can be remotely manipulated by 808 nm near-infrared light to trigger the photothermal conversion and Curtius rearrangement reaction within the particles for robustly pushing nitrogen out into the solution. Such a two-stage light-to-heat-to-chemical energy transition effectively powers the NRs for an ultrafast (≈300 µm s-1 ) and chemical medium-independent self-propulsion in the liquid media. That endows the NRs with high permeability against physiological barriers in the tumor microenvironment to directionally deliver therapeutic agents to target lesions for elevating tumor accumulation, deep penetration, and cellular uptake, resulting in a significant enhancement of antitumor efficacy. This work will inspire the design of advanced kinetic systems for powering intelligent nanomachines in biomedical applications.


Asunto(s)
Rayos Infrarrojos , Neoplasias , Humanos , Nanomedicina , Movimiento (Física) , Calor , Microambiente Tumoral
3.
Angew Chem Int Ed Engl ; 62(29): e202306169, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37222340

RESUMEN

Colloidal motors with multimode propulsion have attracted considerable attention because of enhanced transportability. It is a great challenge to fabricate colloidal motors powered by a single engine for multimode synergistic propulsion. Herein, we report on Janus versatile polymer nanoplatforms integrating various functionalities via tetrazole linkages for light-regulated multimode synergistic propulsion in the liquid. The presence of tetrazole linkages in the polymers endows the nanoparticles with various photoresponsive capabilities. A sole energy source (ultraviolet or visible light) simultaneously activates photocatalytic N2 release and photothermal conversion within the tetrazole-containing polymer phase at one side of asymmetric nanoparticles for converting light energy into photothermal/photocatalytic propulsion independent of the surrounding chemical medium. The photoactivated locomotion using tetrazoles as light-triggered fuels highly corresponds to light wavelengths, light powers and tetrazole contents. The tetrazole linkages capable of incorporating various functionalities to the polymer nanoparticles allow on-demand customizing of the colloidal motors, showing great potential in bio-applications.

4.
Small ; 18(24): e2201525, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35560973

RESUMEN

Limited permeability in solid tumors significantly restricts the anticancer efficacy of nanomedicines. Light-driven nanomotors powered by photothermal converting engines are appealing carriers for directional drug delivery and simultaneous phototherapy. Nowadays, it is still a great challenge to construct metal-free photothermal nanomotors for a programmable anticancer treatment. Herein, one kind of photoactivated organic nanomachines is reported with asymmetric geometry assembled by light-to-heat converting semiconducting polymer engine and macromolecular anticancer payload through a straightforward nanoprecipitation process. The NIR-fueled polymer engine can be remotely controlled to power the nanomachines for light-driven thermophoresis in the liquid media and simultaneously thermal ablating the cancer cells. The great manipulability of the nanomachines allows for programming of their self-propulsion in the tumor microenvironment for effectively improving cellular uptake and tumor penetration of the anticancer payload. Taking the benefit from this behavior, a programmed treatment process is established at a low drug dose and a low photothermal temperature for significantly enhancing the antitumor efficacy.


Asunto(s)
Nanopartículas , Neoplasias , Sistemas de Liberación de Medicamentos , Humanos , Fototerapia , Polímeros , Microambiente Tumoral
5.
Biomacromolecules ; 21(11): 4591-4598, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32578984

RESUMEN

Herein, we report on one-pot fabrication of oil-filled nanocapsules wrapped with both RAFT-made glycopolymers and neutral polysaccharides (dextran and pullulan). We have made use of the nanoprecipitation technique, relying on coprecipitation of both oil and polymers in conditions thoroughly established from phase diagrams' interpretation. Mixed mono- or multilayered nanocapsules were obtained through simultaneous or sequential nanoprecipitations, respectively. Incorporation of synthetic glycopolymer chains allows for precisely tailoring the dimensions of the nanocapsules (size and membrane thickness of the polymeric shell), whereas the insertion of polysaccharides enables to tune the (bio)degradability of the nanocapsules. Shell-functionalized and/or core-loaded capsules could also be achieved in a similar one-pot process, by introducing a drug and/or biotin in the organic and aqueous phase, respectively.


Asunto(s)
Nanocápsulas , Cápsulas , Tamaño de la Partícula , Polímeros , Polisacáridos , Agua
6.
Chemistry ; 25(9): 2358-2365, 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30516296

RESUMEN

Sialidases (SAs) hydrolyze sialyl residues from glycoconjugates of the eukaryotic cell surface and are virulence factors expressed by pathogenic bacteria, viruses, and parasites. The catalytic domains of SAs are often flanked with carbohydrate-binding module(s) previously shown to bind sialosides and to enhance enzymatic catalytic efficiency. Herein, non-hydrolyzable multivalent thiosialosides were designed as probes and inhibitors of V. cholerae, T. cruzi, and S. pneumoniae (NanA) sialidases. NanA was truncated from the catalytic and lectinic domains (NanA-L and NanA-C) to probe their respective roles upon interacting with sialylated surfaces and the synthetically designed di- and polymeric thiosialosides. The NanA-L domain was shown to fully drive NanA binding, improving affinity for the thiosialylated surface and compounds by more than two orders of magnitude. Importantly, each thiosialoside grafted onto the polymer was also shown to reduce NanA and NanA-C catalytic activity with efficiency that was 3000-fold higher than that of the monovalent thiosialoside reference. These results extend the concept of multivalency for designing potent bacterial and parasitic sialidase inhibitors.

7.
Biomacromolecules ; 20(10): 3915-3923, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31479237

RESUMEN

We report here on a one-pot construction of oil-filled hierarchical capsular assemblies using the nanoprecipitation technique. Relying on multicomponent phase diagrams, we show that simultaneous and/or sequential nanoprecipitations involving polymer combinations can be precisely programmed to design a new class of mixed/multilayered multicomponent nanocapsules, with a precise control of the dimensions, shell thickness/composition, and spatial distribution of the building blocks. The simplicity and tunability of this approach are exemplified here with a library of neutral and ionic polysaccharides giving access to a range of functional multilayered nanocarriers of interest for biomedical applications.


Asunto(s)
Nanocápsulas/química , Polisacáridos/química , Tecnología Farmacéutica/métodos , Aceites/química , Polímeros/química , Dióxido de Silicio/química
8.
Biomacromolecules ; 16(6): 1827-36, 2015 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-25961760

RESUMEN

n-Heptyl α-d-mannose (HM) is a nanomolar antagonist of FimH, a virulence factor of E. coli. Herein we report on the construction of multivalent HM-based glycopolymers as potent antiadhesives of type 1 piliated E. coli. We investigate glycopolymer/FimH and glycopolymer/bacteria interactions and show that HM-based glycopolymers efficiently inhibit bacterial adhesion and disrupt established cell-bacteria interactions in vitro at very low concentration (0.1 µM on a mannose unit basis). On a valency-corrected basis, HM-based glycopolymers are, respectively, 10(2) and 10(6) times more potent than HM and d-mannose for their capacity to disrupt the binding of adherent-invasive E. coli to T84 intestinal epithelial cells. Finally, we demonstrate that the antiadhesive capacities of HM-based glycopolymers are preserved ex vivo in the colonic loop of a transgenic mouse model of Crohn's disease. All together, these results underline the promising scope of HM-based macromolecular ligands for the antiadhesive treatment of E. coli induced inflammatory bowel diseases.


Asunto(s)
Proteínas Fimbrias/antagonistas & inhibidores , Mucosa Intestinal/efectos de los fármacos , Polisacáridos Bacterianos/farmacología , Adhesinas de Escherichia coli , Animales , Adhesión Celular/efectos de los fármacos , Escherichia coli/patogenicidad , Células HeLa , Heptanol/química , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Manosa/química , Ratones , Polisacáridos Bacterianos/química
9.
Org Biomol Chem ; 12(12): 1975-82, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24549264

RESUMEN

Efficient and safe gene vectors are important for gene therapy. Here, a novel family of amphiphilic polyethylenimine (PEI) LD1-PEI bearing a polar group of branched PEI 25K and four dodecyl chains was developed. Agarose gel electrophoresis was used to confirm the formation of complexes. The transfection activity of the amphiphilic carrier was evaluated in different cell lines. The in vitro study showed that LD1-PEI showed a higher transfection efficiency with improved biocompatibility than PEI 25K. Serum showed almost no or only a slight effect on LD1-PEI/DNA transfection efficiency. In summary, LD1-PEI is a promising nonviral gene carrier.


Asunto(s)
ADN/química , Vectores Genéticos/química , Polietileneimina/química , Tensoactivos/química , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Vectores Genéticos/síntesis química , Vectores Genéticos/farmacología , Células HeLa , Células Hep G2 , Humanos , Ratones , Estructura Molecular , Células 3T3 NIH , Tamaño de la Partícula , Polietileneimina/síntesis química , Polietileneimina/farmacología , Propiedades de Superficie , Tensoactivos/síntesis química , Tensoactivos/farmacología
10.
Angew Chem Int Ed Engl ; 53(27): 6910-3, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24862553

RESUMEN

A general, rapid, and undemanding method to generate at will functional oil-filled nanocapsules through nanoprecipitation is reported. On the basis of polymer and hexadecane/water/acetone phase diagrams, the composition can be set so that polymer chains preferentially stick at the interface of the oil droplets to create nanocapsules. The nanocapsules can be decorated with biorelevant molecules (biotin, fluorescent tags, metal nanoparticles) within the shell and loaded with hydrophobic molecules in a simple one-pot procedure.


Asunto(s)
Nanocápsulas/química , Acetona/química , Alcanos/química , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas del Metal/química , Polímeros/química , Agua/química
11.
Nanoscale ; 16(6): 2789-2804, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38231523

RESUMEN

Artificial nanomotors are self-propelled nanometer-scaled machines that are capable of converting external energy into mechanical motion. A significant progress on artificial nanomotors over the last decades has unlocked the potential of carrying out manipulatable transport and cargo delivery missions with enhanced efficiencies owing to their stimulus-responsive autonomous movement in various complex environments, allowing for future advances in a large range of applications. Emergent kinetic systems with programmable energy-converting mechanisms that are capable of powering the nanomotors are attracting increasing attention. This review highlights the most-recent representative examples of synthetic organic nanomotors having self-propelled motion exclusively powered by organic molecule- or their aggregate-based kinetic systems. The stimulus-responsive propulsion mechanism, motion behaviors, and performance in antitumor therapy of organic nanomotors developed so far are illustrated. A future perspective on the development of organic nanomotors is also proposed. With continuous innovation, it is believed that the scope and possible achievements in practical applications of organic nanomotors with diversified organic kinetic systems will expand.

12.
J Colloid Interface Sci ; 665: 634-642, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552580

RESUMEN

Pathogen contamination in drinking water sources causes waterborne infectious diseases, seriously threatening human health. Nowadays, stimuli-responsive self-propelled nanomotors are appealing therapeutic agents for antibacterial therapy in vivo. However, achieving water disinfection using these nanobots is still a great challenge. Herein, we report on prebiotic galactooligosaccharide-based nanomotors for sunlight-regulated water disinfection. The nanomotors can utilize galactooligosaccharide-based N-nitrosamines as sunlight-responsive fuels for the spontaneous production of antibacterial nitric oxide. Such a solar-to-chemical energy conversion would power the nanomotors for self-diffusiophoresis, which could promote the diffusion of the nanomotors in water and their penetration in the biofilm, significantly enhancing the inhibition and elimination of the pathogens and their biofilms in aquatic environments. After water treatments, the prebiotic-based residual disinfectants can be selectively utilized by beneficial bacteria to effectively relieve safety risks to the environment and human health. The low-energy-cost, green and potent antibacterial nanobots show promising potential in water disinfection.


Asunto(s)
Desinfectantes , Humanos , Desinfectantes/farmacología , Desinfección , Luz Solar , Biopelículas , Antibacterianos/farmacología
13.
J Colloid Interface Sci ; 675: 64-73, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38964125

RESUMEN

Artificial colloidal motors capable of converting various external energy into mechanical motion, have emerged as attractive photosensitizer (PS) nanocarriers with good deliverability for photodynamic therapy. However, photoactivated 3O2-to-1O2 transformation as the most crucial energy transfer of the photodynamic process itself is still challenging to convert into autonomous transport. Herein, we report on PS-loaded thiophane-containing semiconducting conjugated polymer (SCP)-based polymer colloidal motors with asymmetric geometry for photodynamic-regulated propulsion in the liquid. The asymmetrical presence of the SCP phases within the colloidal motors would lead to significant differences in the 3O2-to-1O2 transformation and 1O2 release manners between asymmetrical polymer phases, spontaneously creating asymmetrical osmotic pressure gradients across the nanoparticles for powering the self-propelled motion under photodynamic regulation. This photoactivated energy-converting behavior can be also combined with the photothermal conversion of the SCP phases to create two energy gradients exerting diffusiophoretic/thermophoretic force on the colloidal motors for achieving multimode synergistic propulsion. This unique motile feature endows the light-driven PS nanocarriers with good permeability against various physiological barriers in the tumor microenvironment for enhancing antitumor efficacy, showing great potential in phototherapy.

14.
Adv Colloid Interface Sci ; 294: 102474, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34311157

RESUMEN

Polymeric nanoparticles are highly important functional nanomaterials for a large range of applications from therapeutics to energy. Advances in nanotechnology have enabled the engineering of multifunctional polymeric nanoparticles with a variety of shapes and inner morphologies. Thanks to its inherent simplicity, the nanoprecipitation technique has progressively become a popular approach to construct polymeric nanoparticles with precise control of nanostructure. The present review highlights the great capability of this technique in controlling the fabrication of various polymeric nanostructures of interest. In particular, we show here how the nanoprecipitation of either block copolymers or mixtures of homopolymers can afford a myriad of colloids displaying equilibrium (typically onion-like) or out-of-equilibrium (stacked lamellae, porous cores) morphologies, depending whether the system "freezes" while passing the glass transition or crystallization point of starting materials. We also show that core-shell morphologies, either from polymeric or oil/polymer mixtures, are attainable by this one-pot process. A final discussion proposes new directions to enlarge the scope and possible achievements of the process.

15.
ACS Macro Lett ; 10(5): 628-634, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35570771

RESUMEN

Herein, we report on the precise design of a modular fusion protein amenable to the construction of nanocapsules by nanoprecipitation. The central squid suckerin-derived peptide block provides structural stability, whereas both termini from spider silk fibroins make the protein highly soluble at physiological pH, a critical requirement for the nanoprecipitation process. With this design, nanocapsules consisting of fusion protein shells and oily cores with sizes in the range of 190-250 nm are built in a straightforward manner.


Asunto(s)
Fibroínas , Nanocápsulas , Animales , Decapodiformes/química , Fibroínas/química , Péptidos , Seda/química
16.
J Phys Chem Lett ; 9(1): 96-103, 2018 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-29239612

RESUMEN

Aqueous interfaces are ubiquitous in Nature and play a fundamental role in environmental or biological processes or modern nanotechnologies. These interfaces are negatively charged, and despite several decades of research, the rationale behind this phenomenon is still under debate. Two main controversial schools of thought argue on this issue; the first relies on the adsorption of hydroxide anions on hydrophobic surfaces, whereas the second one supports a self-rearrangement of water molecules at the interface bearing hydronium ions. Here, we report on two series of independent experimental studies (nanoprecipitation and interfacial tension measurements) that demonstrate that in the pH 5-10 range the negative interfacial charge of the colloids mostly stems from bicarbonate ions, whereas at lower and higher pH, protons and hydroxide ions contribute, with bicarbonate ions, to the interfacial charging. This new interpretation complies with previous studies and opens new perspectives to this striking physical chemical issue.

17.
ACS Appl Mater Interfaces ; 10(30): 25154-25165, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29979019

RESUMEN

Fluorescent nanoparticles built from aggregation-induced emission-active organic molecules (AIE-FONs) have emerged as powerful tools in life science research for in vivo bioimaging of organs, biosensing, and therapy. However, the practical use of such biotracers has been hindered owing to the difficulty of designing bright nanoparticles with controlled dimensions (typically below 200 nm), narrow size dispersity and long shelf stability. In this article, we present a very simple yet effective approach to produce monodisperse sub-200 nm AIE fluorescent organic solid dispersions with excellent redispersibility and colloidal stability in aqueous medium by combination of nanoprecipitation and freeze-drying procedures. By selecting polymer additives that simultaneously act as stabilizers, promoters of amorphous-crystalline transition, and functionalization/cross-linking platforms, we demonstrate a straightforward access to stable nanocrystalline FONs that exhibit significantly higher brightness than their amorphous precursors and constitute efficient probes for in vivo imaging of the normal and tumor vasculature. FONs design principles reported here are universal, applicable to a range of fluorophores with different chemical structures and crystallization abilities, and are suitable for high-throughput production and manufacturing of functional imaging probes.


Asunto(s)
Nanopartículas , Colorantes Fluorescentes , Polímeros
18.
Chem Commun (Camb) ; 53(8): 1401-1404, 2017 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-28078342

RESUMEN

Formation of O/W surfactant-free microemulsions from water/oil/acetone ternary systems is exploited to construct precisely-defined shell-functionalized core-loaded nanocapsules with tunable diameters (ranging from 50 to 190 nm) in one step.

19.
ACS Macro Lett ; 6(4): 447-451, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35610850

RESUMEN

A series of PHPMA homopolymers and of mannose- and dimethylamino-functionalized copolymers, were prepared by RAFT polymerization and engaged in the preparation of oil-loaded nanocapsules using the "Shift'N'Go" process. Playing with the phase diagrams of both oil and homo- or copolymers afforded the preparation of functional camptothecin-loaded nanocapsules displaying tunable dimensions (90-350 nm), compositions and surface properties.

20.
ACS Macro Lett ; 4(9): 1008-1011, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35596437

RESUMEN

The synthesis by aqueous RAFT polymerization of hydrophilic narrowly dispersed imidazolium-based poly(ionic liquid)s (D typically below 1.20) is reported. Full monomer conversion is achieved within hours and high end-group fidelity of the living end groups affords the preparation of well-defined block copolymers. The resulting poly(ionic liquid) macroRAFT agents are finally exploited to polymerize 2-vinylpyridine in water and generate PIL-based nanoparticles of various morphologies (spheres, vesicles, or worms) in a one-pot surfactant-free process.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda