Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Commun Signal ; 22(1): 467, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350161

RESUMEN

Traumatic brain injury (TBI) is an acquired insult to the brain caused by an external mechanical force, potentially resulting in temporary or permanent impairment. Microglia, the resident immune cells of the central nervous system, are activated in response to TBI, participating in tissue repair process. However, the underlying epigenetic mechanisms in microglia during TBI remain poorly understood. ARID1A (AT-Rich Interaction Domain 1 A), a pivotal subunit of the multi-protein SWI/SNF chromatin remodeling complex, has received little attention in microglia, especially in the context of brain injury. In this study, we generated a Arid1a cKO mouse line to investigate the potential roles of ARID1A in microglia in response to TBI. We found that glial scar formation was exacerbated due to increased microglial migration and a heightened inflammatory response in Arid1a cKO mice following TBI. Mechanistically, loss of ARID1A led to an up-regulation of the chemokine CCL5 in microglia upon the injury, while the CCL5-neutralizing antibody reduced migration and inflammatory response of LPS-stimulated Arid1a cKO microglia. Importantly, administration of auraptene (AUR), an inhibitor of CCL5, repressed the microglial migration and inflammatory response, as well as the glial scar formation after TBI. These findings suggest that ARID1A is critical for microglial response to injury and that AUR has a therapeutic potential for the treatment of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Quimiocina CCL5 , Proteínas de Unión al ADN , Ratones Noqueados , Microglía , Factores de Transcripción , Animales , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/genética , Microglía/metabolismo , Microglía/patología , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Movimiento Celular , Cicatriz/patología , Cicatriz/metabolismo , Ratones Endogámicos C57BL , Masculino
2.
Mol Biol Evol ; 37(4): 952-968, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31846031

RESUMEN

Knowledge of the physiological and morphological evolution and adaptation of nonhuman primates is critical to understand hominin origins, physiological ecology, morphological evolution, and applications in biomedicine. Particularly, limestone langurs represent a direct example of adaptations to the challenges of exploiting a high calcium and harsh environment. Here, we report a de novo genome assembly (Tfra_2.0) of a male François's langur (Trachypithecus francoisi) with contig N50 of 16.3 Mb and resequencing data of 23 individuals representing five limestone and four forest langur species. Comparative genomics reveals evidence for functional evolution in genes and gene families related to calcium signaling in the limestone langur genome, probably as an adaptation to naturally occurring high calcium levels present in water and plant resources in karst habitats. The genomic and functional analyses suggest that a single point mutation (Lys1905Arg) in the α1c subunit of the L-type voltage-gated calcium channel Cav1.2 (CACNA1C) attenuates the inward calcium current into the cells in vitro. Population genomic analyses and RNA-sequencing indicate that EDNRB is less expressed in white tail hair follicles of the white-headed langur (T. leucocephalus) compared with the black-colored François's langur and hence might be responsible for species-specific differences in body coloration. Our findings contribute to a new understanding of gene-environment interactions and physiomorphological adaptative mechanisms in ecologically specialized primate taxa.


Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Genoma , Presbytini/genética , Distribución Animal , Animales , Asia Sudoriental , Señalización del Calcio/genética , Ecosistema , Color del Cabello/genética , Masculino , Familia de Multigenes , Filogeografía , Presbytini/anatomía & histología , Selección Genética
3.
Front Zool ; 13: 28, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27366197

RESUMEN

BACKGROUND: Bitter taste perception is essential for species with selective food intake, enabling them to avoid unpalatable or toxic items. Previous studies noted a marked variation in the number of TAS2R genes among various vertebrate species, but the underlying causes are not well understood. Laurasiatherian mammals have highly diversified dietary niche, showing repeated evolution of specialized feeding preferences in multiple lineages and offering a unique chance to investigate how various feeding niches are associated with copy number variation for bitter taste receptor genes. RESULTS: Here we investigated the evolutionary trajectories of TAS2Rs and their implications on bitter taste perception in whole-genome assemblies of 41 Laurasiatherian species. The number of intact TAS2Rs copies varied considerably, ranging from 0 to 52. As an extreme example of a narrow dietary niche, the Chinese pangolin possessed the lowest number of intact TAS2Rs (n = 2) among studied terrestrial vertebrates. Marine mammals (cetacea and pinnipedia), which swallow prey whole, presented a reduced copy number of TAS2Rs (n = 0-5). In contrast, independent insectivorous lineages, such as the shrew and insectivorous bats possessed a higher TAS2R diversity (n = 52 and n = 20-32, respectively), exceeding that in herbivores (n = 9-22) and omnivores (n = 18-22). CONCLUSIONS: Besides herbivores, insectivores in Laurasiatheria tend to have more functional TAS2Rs in comparison to carnivores and omnivores. Furthermore, animals swallowing food whole (cetacean, pinnipedia and pangolin) have lost most functional TAS2Rs. These findings provide the most comprehensive view of the bitter taste gene repertoire in Laurasiatherian mammals to date, casting new light on the relationship between losses and gains of TAS2Rs and dietary specialization in mammals.

4.
Stem Cell Res Ther ; 13(1): 534, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575558

RESUMEN

BACKGROUND: Rett syndrome (RTT), mainly caused by mutations in methyl-CpG binding protein 2 (MECP2), is one of the most prevalent neurodevelopmental disorders in girls. However, the underlying mechanism of MECP2 remains largely unknown and currently there is no effective treatment available for RTT. METHODS: We generated MECP2-KO human embryonic stem cells (hESCs), and differentiated them into neurons and cerebral organoids to investigate phenotypes of MECP2 loss-of-function, potential therapeutic agents, and the underlying mechanism by transcriptome sequencing. RESULTS: We found that MECP2 deletion caused reduced number of hESCs-derived neurons and simplified dendritic morphology. Moreover, MECP2-KO cortical organoids exhibited fewer neural progenitor cells and neurons at day 60. Electrophysiological recordings showed that MECP2 deletion altered synaptic activity in organoids. Transcriptome analysis of organoids identified many genes in the PI3K-AKT pathway downregulated following MECP2 deletion. Treatment with either KW-2449 or VPA, small molecules for the activation of PI3K-AKT signaling pathway, alleviated neuronal deficits and transcriptome changes in MECP2-KO human neuronal models. CONCLUSIONS: These findings suggest that KW-2449 and VPA might be promising drugs for RTT treatment.


Asunto(s)
Células Madre Embrionarias Humanas , Síndrome de Rett , Femenino , Humanos , Células Madre Embrionarias Humanas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Neuronas/metabolismo , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo
5.
Gigascience ; 7(9)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30165519

RESUMEN

Background: The rhesus macaque (RM, Macaca mulatta) is the most important nonhuman primate model in biomedical research. We present the first genomic survey of wild RMs, sequencing 81 geo-referenced individuals of five subspecies from 17 locations in China, a large fraction of the species' natural distribution. Results: Populations were structured into five genetic lineages on the mainland and Hainan Island, recapitulating current subspecies designations. These subspecies are estimated to have diverged 125.8 to 51.3 thousand years ago, but feature recent gene flow. Consistent with the expectation of a larger body size in colder climates and smaller body size in warmer climates (Bergman's rule), the northernmost RM lineage (M. m. tcheliensis), possessing the largest body size of all Chinese RMs, and the southernmost lineage (M. m. brevicaudus), with the smallest body size of all Chinese RMs, feature positively selected genes responsible for skeletal development. Further, two candidate selected genes (Fbp1, Fbp2) found in M. m. tcheliensis are involved in gluconeogenesis, potentially maintaining stable blood glucose levels during starvation when food resources are scarce in winter. The tropical subspecies M. m. brevicaudus showed positively selected genes related to cardiovascular function and response to temperature stimuli, potentially involved in tropical adaptation. We found 118 single-nucleotide polymorphisms matching human disease-causing variants with 82 being subspecies specific. Conclusions: These data provide a resource for selection of RMs in biomedical experiments. The demographic history of Chinese RMs and their history of local adaption offer new insights into their evolution and provide valuable baseline information for biomedical investigation.


Asunto(s)
Aclimatación/genética , Genética de Población , Macaca mulatta/genética , Animales , Investigación Biomédica , China , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda