Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835223

RESUMEN

Ventilator-induced lung injury (VILI) occurs in mechanically ventilated patients of respiratory disease and is typically characterized by airway inflammation. However, recent studies increasingly indicate that a major cause of VILI may be the excessive mechanical loading such as high stretch (>10% strain) on airway smooth muscle cells (ASMCs) due to mechanical ventilation (MV). Although ASMCs are the primary mechanosensitive cells in airways and contribute to various airway inflammation diseases, it is still unclear how they respond to high stretch and what mediates such a response. Therefore, we used whole genome-wide mRNA-sequencing (mRNA-Seq), bioinformatics, and functional identification to systematically analyze the mRNA expression profiles and signaling pathway enrichment of cultured human ASMCs exposed to high stretch (13% strain), aiming to screen the susceptible signaling pathway through which cells respond to high stretch. The data revealed that in response to high stretch, 111 mRNAs with count ≥100 in ASMCs were significantly differentially expressed (defined as DE-mRNAs). These DE-mRNAs are mainly enriched in endoplasmic reticulum (ER) stress-related signaling pathways. ER stress inhibitor (TUDCA) abolished high-stretch-enhanced mRNA expression of genes associated with ER stress, downstream inflammation signaling, and major inflammatory cytokines. These results demonstrate in a data-driven approach that in ASMCs, high stretch mainly induced ER stress and activated ER stress-related signaling and downstream inflammation response. Therefore, it suggests that ER stress and related signaling pathways in ASMCs may be potential targets for timely diagnosis and intervention of MV-related pulmonary airway diseases such as VILI.


Asunto(s)
Pulmón , Respiración Artificial , Humanos , Pulmón/metabolismo , Estrés del Retículo Endoplásmico , Inflamación/metabolismo , Células Cultivadas , Miocitos del Músculo Liso/metabolismo , ARN Mensajero/metabolismo
2.
Cells ; 13(2)2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38247802

RESUMEN

High stretch (>10% strain) of airway smooth muscle cells (ASMCs) due to mechanical ventilation (MV) is postulated to contribute to ventilator-induced lung injury (VILI), but the underlying mechanisms remain largely unknown. We hypothesized that ASMCs may respond to high stretch via regulatory miRNA-mRNA interactions, and thus we aimed to identify high stretch-responsive cellular events and related regulating miRNA-mRNA interactions in cultured human ASMCs with/without high stretch. RNA-Seq analysis of whole genome-wide miRNAs revealed 12 miRNAs differentially expressed (DE) in response to high stretch (7 up and 5 down, fold change >2), which target 283 DE-mRNAs as identified by a parallel mRNA sequencing and bioinformatics analysis. The KEGG and GO analysis further indicated that purine metabolism was the first enriched event in the cells during high stretch, which was linked to miR-370-5p-PDE4D/AK7. Since PDE4D/AK7 have been previously linked to cAMP/ATP metabolism in lung diseases and now to miR-370-5p in ASMCs, we thus evaluated the effect of high stretch on the cAMP/ATP level inside ASMCs. The results demonstrated that high stretch modulated the cAMP/ATP levels inside ASMCs, which could be largely abolished by miR-370-5p mimics. Together, these findings indicate that miR-370-5p-PDE4D/AK7 mediated high stretch-induced modulation of cAMP and ATP synthesis inside ASMCs. Furthermore, such interactive miRNA-mRNA pairs may provide new insights for the discovery of effective biomarkers/therapeutic targets for the diagnosis and treatment of VILI and other MV-associated respiratory diseases.


Asunto(s)
MicroARNs , Humanos , MicroARNs/genética , Miocitos del Músculo Liso , ARN Mensajero/genética , Purinas , Adenosina Trifosfato
3.
Front Pharmacol ; 13: 1033043, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578545

RESUMEN

The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a never before seen challenge to human health and the world economy. However, it is difficult to widely use conventional animal and cell culture models in understanding the underlying pathological mechanisms of COVID-19, which in turn hinders the development of relevant therapeutic treatments, including drugs. To overcome this challenge, various three-dimensional (3D) pulmonary cell culture models such as organoids are emerging as an innovative toolset for simulating the pathophysiology occurring in the respiratory system, including bronchial airways, alveoli, capillary network, and pulmonary interstitium, which provide a robust and powerful platform for studying the process and underlying mechanisms of SARS-CoV-2 infection among the potential primary targets in the lung. This review introduces the key features of some of these recently developed tools, including organoid, lung-on-a-chip, and 3D bioprinting, which can recapitulate different structural compartments of the lung and lung function, in particular, accurately resembling the human-relevant pathophysiology of SARS-CoV-2 infection in vivo. In addition, the recent progress in developing organoids for alveolar and airway disease modeling and their applications for discovering drugs against SARS-CoV-2 infection are highlighted. These innovative 3D cell culture models together may hold the promise to fully understand the pathogenesis and eventually eradicate the pandemic of COVID-19.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda