Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Metabolomics ; 20(5): 96, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110263

RESUMEN

INTRODUCTION: Ginseng berry (GB) has previously been demonstrated to improve systemic insulin resistance and regulate hepatic glucose metabolism and steatosis in mice with diet-induced obesity (DIO). OBJECTIVES: In this study, the role of GB in metabolism was assessed using metabolomics analysis on the total liver metabolites of DIO mice. METHODS: Metabolomic profiling was performed using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF/MS) of liver tissue from mice on a 12-wk normal chow diet (NC), high-fat diet (HFD), and HFD supplemented with 0.1% GB (HFD + GB). The detected metabolites, its pathways, and functions were analyzed through partial least square discriminant analysis (PLS-DA), the small molecular pathway database (SMPDB), and MetaboAnalyst 5.0. RESULTS: The liver metabolite profiles of NC, HFD, and GB-fed mice (HFD + GB) were highly compartmentalized. Metabolites involved in major liver functions, such as mitochondrial function, gluconeogenesis/glycolysis, fatty acid metabolism, and primary bile acid biosynthesis, showed differences after GB intake. The metabolites that showed significant correlations with fasting blood glucose (FBG), insulin, and homeostatic model assessment for insulin resistance (HOMA-IR) were highly associated with mitochondrial membrane function, energy homeostasis, and glucose metabolism. Ginseng berry intake increased the levels of metabolites involved in mitochondrial membrane function, decreased the levels of metabolites related to glucose metabolism, and was highly correlated with metabolic phenotypes. CONCLUSION: This study demonstrated that long-term intake of GB changed the metabolite of hepatosteatotic livers in DIO mice, normalizing global liver metabolites involved in mitochondrial function and glucose metabolism and indicating the potential mechanism of GB in ameliorating hyperglycemia in DIO mice.


Asunto(s)
Dieta Alta en Grasa , Glucosa , Hígado , Metabolómica , Obesidad , Panax , Animales , Panax/metabolismo , Panax/química , Ratones , Metabolómica/métodos , Hígado/metabolismo , Glucosa/metabolismo , Masculino , Obesidad/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratones Obesos , Resistencia a la Insulina , Frutas/metabolismo , Frutas/química , Metaboloma/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos
2.
Eur J Nutr ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867083

RESUMEN

PURPOSE: DNA methylation is a major epigenetic phenomenon through which diet affects health and disease. This study aimed to determine the epigenetic influence of the traditional Korean diet (K-diet) on global DNA methylation via one-carbon metabolism. METHODS: A crossover study was conducted on 52 women. Two diets, a K-diet, high in plant foods and low in calories and animal fat, and a control diet, similar to the diet currently consumed in Korea, were provided to all subjects alternately for 4 weeks with a 4-week washout period. Clinical parameters were measured before and after each dietary intervention. Nutrient intake was calculated by using a computer-aided nutritional analysis program. One-carbon metabolites in the serum and global DNA methylation in peripheral mononuclear cells were determined using ultra-performance liquid chromatography-tandem mass spectrometry. RESULTS: The K-diet group consumed more folate (669.9 ± 6.7 µg vs. 502.7 ± 3.0, p < 0.001), B6, B12, serine, and choline, and less methionine (992.6 ± 63 vs. 1048.3 mg ± 34.1, p < 0.0001) than the control group did. In the K-diet group, the increment of plasma 5-methyltetrahydrofolate (0.08 µg/mL ± 0.11 vs 0.02 ± 0.10, p < 0.009) and decrement of L-homocysteine (- 70.7 ± 85.0 vs - 39.3 ± 69.4, p < 0.0168) were greater than those of the control group. Global DNA methylation was significantly increased in the K-diet group (6.70 ± 3.02% to 9.45 ± 3.69, p < 0.0001) but not in the control group. CONCLUSIONS: A K-diet high in one-carbon nutrients can enhance the global DNA methylation status, suggesting an epigenetic mechanism by which the K-diet conveys health effects. Trial registration Korean Clinical Trial Registry (trial number: KCT0005340, 24/08/2020, retrospectively registered).

3.
Antioxidants (Basel) ; 13(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38671923

RESUMEN

This study examined how consuming porcine brain enzyme hydrolysate (PBEH) affects the immune function and composition of the gut microbiota in an immunodeficient animal model. Male Wistar rats aged 6 weeks were fed casein (control), 100 mg/kg body weight (BW), red ginseng extract (positive-control), and 6, 13, and 26 mg PBEH per kg BW (PBEH-L, PBEH-M, and PBEH-H, respectively) daily for 4 weeks. At 30 min after consuming assigned compounds, they were orally administered cyclophosphamide (CTX; 5 mg/kg BW), an immunosuppressive agent, to suppress the immune system by inhibiting the proliferation of lymphocytes. The normal-control rats were fed casein and water instead of CTX. Natural killer cell activity and splenocyte proliferation induced by 1 µg/mL lipopolysaccharide were lower in the control group than the normal-control group, and they significantly increased with PBEH consumption, particularly at high doses. The PBEH consumption increased dose-dependently in the Th1/Th2 ratio compared to the control. The lipid peroxide contents were lower in the PBEH group than in the control group. Moreover, PBEH m and PBEH-H consumption mitigated white pulp cell damage, reduced red pulp congestion, and increased spleen mast cells in the histological analysis. Intestinal microbiota composition demonstrated differences between the groups at the genus levels, with Akkermansia being more abundant in the control group than the normal-control group and the PBEH-H group showing a decrease. However, Bifidobacterium decreased in the control group but increased in the PBEH-H group. The ß-diversity revealed distinct microbial communities of PBEH and positive-control groups compared to the control group (p < 0.05). The metagenome predictions revealed that PBEH-H influenced amino acid metabolism, antioxidant defense, insulin sensitivity, and longevity pathways. In conclusion, PBEH-H intake boosted immune responses and reduced lipid peroxides by modulating gut microbiota composition. These findings suggest that PBEH-H has the potential as a dietary supplement for improving immune function and gut health in individuals with immunodeficiency.

4.
Int J Biol Macromol ; 268(Pt 2): 131908, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38679269

RESUMEN

Curcuma longa and Sargassum coreanum are commonly used in traditional pharmaceutical medicine to improve immune function in chronic diseases. The present study was designed to systematically elucidate the in vitro and in vivo immuno-enhancing effects of a combination of C. longa and S. coreanum extracts (CS) that contain polyphenols and saccharides as functional molecules in a cyclophosphamide (Cy)-induced model of immunosuppression. In primary splenocytes, we observed the ameliorative effects of CS on a Cy-induced immunosuppression model with low cytotoxicity and an optimal mixture procedure. CS treatment enhanced T- and B-cell proliferation, increased splenic natural killer-cell activity, and restored cytokine release. Wistar rats were orally administered low (30 mg/kg), intermediate (100 mg/kg), or high (300 mg/kg) doses of CS for four weeks, followed by oral administration of Cy (5 mg/kg) for four weeks. Compared with the vehicle group, low-, intermediate-, and high-dose CS treatment accelerated dose-dependent recovery of the serum level of tumor necrosis factor-α, interferon-γ, interleukin-2, and interleukin-12. These results suggest that CS treatment accelerates the amelioration of immune deficiency in Cy-treated primary splenocytes and rats, which supports considering it for immunity maintenance. Our findings provide experimental evidence for further research and clinical application in immunosuppressed patients.


Asunto(s)
Células Asesinas Naturales , Polifenoles , Ratas Wistar , Bazo , Animales , Polifenoles/farmacología , Polifenoles/química , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Ratas , Bazo/efectos de los fármacos , Bazo/inmunología , Bazo/citología , Citocinas/metabolismo , Masculino , Ciclofosfamida/farmacología , Proliferación Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química
5.
Mol Nutr Food Res ; 68(15): e2400201, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38961528

RESUMEN

SCOPE: Single nucleotide polymorphisms (SNP) in the fatty acid desaturase 1 (FADS1) gene is suggested as risk factor of metabolic diseases in genome-wide association studies (GWAS). This study hypothesized that FADS1_rs174546T associates with serum triglycerides (TG) in Korean Genome and Epidemiology Study (KoGES). In addition, functional study of SNP genotypes in cultured cells is performed. METHODS AND RESULTS: FADS1_rs174546T is associated with high level of serum TG (effect size of variant: 6.48 ± 1.84 mg dL-1) in Korean individuals (normotriglyceridemia, n = 5128; hypertriglyceridemia, n = 3714). Functional study in cells with FADS1_rs174546T, shows reduced transcriptional activity, when compared with rs174546C. MiR-6728-3p, which is predicted to bind with rs174546T, decreases transcriptional activity of rs174546T but not in rs174546C, and it is reversed by miR-6728-3p inhibitor. Formononetin is selected as binding molecule to 3'-UTR of FADS1 and increases luciferase activity in both rs174546 (C/T). Moreover, formononetin compensates for the reduced luciferase activity by rs174546T and miR-6728-3p. Formononetin also increases endogenous FADS1 expression and long-chain polyunsaturated fatty acid (LC-PUFA) ratio. CONCLUSION: FADS1_rs174546T is a crucial risk factor for hypertriglyceridemia in the Koreans potentially through the interaction with miR-6728-3p. Formononetin can be a potent dietary intervention to prevent and improve hypertriglyceridemia in both rs174546 (C/T) populations.


Asunto(s)
delta-5 Desaturasa de Ácido Graso , Ácido Graso Desaturasas , Polimorfismo de Nucleótido Simple , Triglicéridos , Ácido Graso Desaturasas/genética , Humanos , República de Corea , Masculino , Triglicéridos/sangre , Femenino , Persona de Mediana Edad , MicroARNs/genética , Hipertrigliceridemia/genética , Hipertrigliceridemia/sangre , Pueblo Asiatico/genética , Adulto
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda