RESUMEN
OBJECTIVES: Kelch repeat and BTB domain-containing protein 8, KBTBD8, has been identified as a female fertility factor. However, there have been no reports on the role of KBTBD8 in the progression of epithelial ovarian cancer, EOC. Our study aimed to address this issue. METHODS: We first examine KBTBD8 expression in EOC tissues and cells. Next, we performed RNA sequencing to reveal the overall mechanism. Then we investigated the roles of KBTBD8 in the proliferation, migration, and health status of cultured EOC cells. Finally, we employed tumor xenograft models to evaluate the role of KBTBD8 in vivo. RESULTS: First, KBTBD8 level was significantly higher in EOC tissues and cells. Next, comparative RNA sequencing identified more tumorigenesis-related genes that KBTBD8 might regulate. Then we found that KBTBD8 knockdown significantly decreased EOC cell proliferation, migration, and the activities of multiple tumorigenesis-related kinases. Finally, KBTBD8 knockdown significantly diminished ovarian tumor formation in vivo. CONCLUSION: Proper KBTBD8 level is essential for the healthy growth of ovarian somatic cells, such as ovarian epithelial cells. Excessive KBTBD8 might be a significant impetus for EOC progression. KBTBD8 reduction greatly inhibits EOC proliferation and migration.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Anciano , Animales , Biomarcadores de Tumor , Carcinoma Epitelial de Ovario/diagnóstico por imagen , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Inmunohistoquímica , Ratones , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Neoplasias Ováricas/diagnóstico por imagen , Análisis de Matrices TisularesRESUMEN
Background and aims: Acute myocardial infarction (AMI) is a prevalent medical condition associated with significant morbidity and mortality rates. The principal underlying factor leading to myocardial infarction is atherosclerosis, with dyslipidemia being a key risk factor. Nonetheless, relying solely on a single lipid level is insufficient for accurately predicting the onset and progression of AMI. The present investigation aims to assess established clinical indicators in China, to identify practical, precise, and effective tools for predicting AMI. Methods: The study enrolled 267 patients diagnosed with acute myocardial infarction as the experimental group, while the control group consisted of 73 hospitalized patients with normal coronary angiography. The investigators collected general clinical data and relevant laboratory test results and computed the Atherogenic Index of Plasma (AIP) for each participant. Using acute myocardial infarction status as the dependent variable and controlling for confounding factors such as smoking history, fasting plasma glucose (FPG), low-density lipoprotein cholesterol (LDL-C), blood pressure at admission, and diabetes history, the researchers conducted multivariate logistic regression analysis with AIP as an independent variable. Receiver operating characteristic (ROC) curves were employed to determine the predictive value of AIP and AIP combined with LDL-C for acute myocardial infarction. Result: The results of the multivariate logistic regression analysis indicated that the AIP was an independent predictor of acute myocardial infarction. The optimal cut-off value for AIP to predict AMI was -0.06142, with a sensitivity of 81.3%, a specificity of 65.8%, and an area under the curve (AUC) of 0.801 (95% confidence interval [CI]: 0.743-0.859, P < 0.001). When AIP was combined with LDL-C, the best cut-off value for predicting acute myocardial infarction was 0.756107, with a sensitivity of 79%, a specificity of 74%, and an AUC of 0.819 (95% CI: 0.759-0.879, P < 0.001). Conclusions: The AIP is considered an autonomous determinant of risk for AMI. Utilizing the AIP index alone, as well as in conjunction with LDL-C, can serve as effective predictors of AMI.
RESUMEN
OBJECTIVE: To prepare a specific polyclonal antibody against full-length SUN5 for detecting the expression of SUN5 in human germ cells. METHODS: Bioinformatic methods were used to compare the full-length SUN5 and its variant SUN5ß, and a short peptide was designed based on the differential region to prepare SUN5 antibody. The prepared antibody was used to detect the expression of SUN5 in Ntera-2 cells and in human germ cells by Western blotting and immunofluorescence assay. RESULTS: The short peptide was correctly synthesized and SUN5 antibody was obtained and purified. Western blotting showed that the prepared antibody was capable of recognizing full-length SUN5 in Ntera-2 cells, and SUN5 expression was localized on the nuclear membrane and in the cytoplasm as shown by immunofluorescence assay. Using this antibody, we detected SUN5 expression in the spermatocytes, round spermatids and sperms in human germ cells. CONCLUSION: We successfully prepared SUN5-specific antibody. SUN5 is expressed in the spermatocytes, round spermatids and sperms in human germ cells, suggesting its important role in spermatogenesis.