Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Acta Pharmacol Sin ; 41(11): 1416-1426, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32973325

RESUMEN

Immunotherapies for cancers may cause severe and life-threatening cardiotoxicities. The underlying mechanisms are complex and largely elusive. Currently, there are several ongoing clinical trials based on the use of activated invariant natural killer T (iNKT) cells. The potential cardiotoxicity commonly associated with this particular immunotherapy has yet been carefully evaluated. The present study aims to determine the effect of activated iNKT cells on normal and ß-adrenergic agonist (isoproterenol, ISO)-stimulated hearts. Mice were treated with iNKT stimulants, α-galactosylceramide (αGC) or its analog OCH, respectively, to determine their effect on ISO-induced cardiac injury. We showed that administration of αGC (activating both T helper type 1 (Th1)- and T helper type 2 (Th2)-liked iNKT cells) significantly accelerated the progressive cardiac injury, leading to enhanced cardiac hypertrophy and cardiac fibrosis with prominent increases in collagen deposition and TGF-ß1, IL-6, and alpha smooth muscle actin expression. In contrast to αGC, OCH (mainly activating Th2-liked iNKT cells) significantly attenuated the progression of cardiac injury and cardiac inflammation induced by repeated infusion of ISO. Flow cytometry analysis revealed that αGC promoted inflammatory macrophage infiltration in the heart, while OCH was able to restrain the infiltration. In vitro coculture of αGC- or OCH-pretreated primary peritoneal macrophages with primary cardiac fibroblasts confirmed the profibrotic effect of αGC and the antifibrotic effect of OCH. Our results demonstrate that activating both Th1- and Th2-liked iNKT cells is cardiotoxic, while activating Th2-liked iNKT cells is likely cardiac protective, which has implied key differences among subpopulations of iNKT cells in their response to cardiac pathological stimulation.


Asunto(s)
Cardiomegalia/etiología , Cardiotónicos/uso terapéutico , Galactosilceramidas/efectos adversos , Glucolípidos/uso terapéutico , Activación de Linfocitos/efectos de los fármacos , Células T Asesinas Naturales/efectos de los fármacos , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Citocinas/metabolismo , Fibrosis , Inflamación/prevención & control , Isoproterenol , Macrófagos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Células T Asesinas Naturales/clasificación
3.
J Asian Nat Prod Res ; 19(6): 630-643, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28440085

RESUMEN

The aim of this study is to investigate the synergism of low dose of actinomycin D (LDActD) to the cytotoxicity of cisplatin (CDDP) on KB cells. The role of P53 reactivation by LDActD in the synergism and its mechanism were further studied. Cell viability was determined by MTT assay. Apoptosis was determined by AnnexinV-FITC/PI staining. Mitochondrial membrane potential (MMP) was detected by JC-1 staining. Expression of proteins was detected by Western blotting (WB) and/or immunofluorescence (IF). Molecular docking of actinomycin D (ACTD) to Mouse double minute 2 homolog (MDM2) and Mouse double minute 2 homolog X (MDMX). MDMX was analyzed by Discovery Studio. The content of P53-MDM2 complex was detected by ELISA assay. The cytotoxicity of CDDP was increased by the combination of LDActD in kinds of cancer cells. Molecular docking showed strong interaction between ACTD and MDM2/MDMX. Meanwhile, LDActD significantly decreased P53-MDM2 complex. Significant increase of the apoptotic activity by the combination therapy in KB cells is P53 upregulated modulator of apoptosis (PUMA) dependent. In addition to the decrease in MMP, LDActD increased P53 regulated protein and decreased BCL-XL in KB cells. LDActD efficiently enhanced the cytotoxicity of CDDP in cancer cells and induced P53-PUMA-dependent and mitochondria-mediated apoptosis in KB cells. The reactivation of P53 was probably achieved by disturbing the interaction of P53 and MDM2/MDMX.


Asunto(s)
Cisplatino/farmacología , Dactinomicina/farmacología , Proteína p53 Supresora de Tumor/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Bencimidazoles/química , Carbocianinas/química , Supervivencia Celular/efectos de los fármacos , Dactinomicina/química , Humanos , Imidazoles/farmacología , Células KB , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo
4.
Research (Wash D C) ; 7: 0409, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39022746

RESUMEN

Helicobacter pylori infection is characterized as progressive processes of bacterial persistence and chronic gastritis with features of infiltration of mononuclear cells more than granulocytes in gastric mucosa. Angiopoietin-like 4 (ANGPTL4) is considered a double-edged sword in inflammation-associated diseases, but its function and clinical relevance in H. pylori-associated pathology are unknown. Here, we demonstrate both pro-colonization and pro-inflammation roles of ANGPTL4 in H. pylori infection. Increased ANGPTL4 in the infected gastric mucosa was produced from gastric epithelial cells (GECs) synergistically induced by H. pylori and IL-17A in a cagA-dependent manner. Human gastric ANGPTL4 correlated with H. pylori colonization and the severity of gastritis, and mouse ANGPTL4 from non-bone marrow-derived cells promoted bacteria colonization and inflammation. Importantly, H. pylori colonization and inflammation were attenuated in Il17a -/-, Angptl4 -/-, and Il17a -/- Angptl4 -/- mice. Mechanistically, ANGPTL4 bound to integrin αV (ITGAV) on GECs to suppress CXCL1 production by inhibiting ERK, leading to decreased gastric influx of neutrophils, thereby promoting H. pylori colonization; ANGPTL4 also bound to ITGAV on monocytes to promote CCL5 production by activating PI3K-AKT-NF-κB, resulting in increased gastric influx of regulatory CD4+ T cells (Tregs) via CCL5-CCR4-dependent migration. In turn, ANGPTL4 induced Treg proliferation by binding to ITGAV to activate PI3K-AKT-NF-κB, promoting H. pylori-associated gastritis. Overall, we propose a model in which ANGPTL4 collectively ensures H. pylori persistence and promotes gastritis. Efforts to inhibit ANGPTL4-associated pathway may prove valuable strategies in treating H. pylori infection.

5.
J Microbiol Biotechnol ; 27(9): 1628-1638, 2017 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-28750505

RESUMEN

Viola tianshanica Maxim, belonging to the Violaceae plant family, is traditionally used in Uighur medicine for treating pneumonia, headache, and fever. There is, however, a lack of basic understanding of its pharmacological activities. This study was designed to observe the effects of the ethanol extract (TSM) from Viola tianshanica Maxim on the inflammation response in acute lung injury (ALI) induced by LPS and the possible underlying mechanisms. We found that TSM (200 and 500 mg/kg) significantly decreased inflammatory cytokine production and the number of inflammatory cells, including macrophages and neutrophils, in bronchoalveolar lavage fluid. TSM also markedly inhibited the lung wet-to-dry ratio and alleviated pathological changes in lung tissues. In vitro, after TSM (12.5-100 µg/ml) treatment to RAW 264.7 cells for 1 h, LPS (1 µg/ml) was added and the cells were further incubated for 24 h. TSM dose-dependently inhibited the levels of proinflammatory cytokines, such as NO, PGE2, TNF-α, IL-6, and IL-1ß, and remarkably decreased the protein and mRNA expression of TNF-α and IL-6 in LPS-stimulated RAW 264.7 cells. TSM also suppressed protein expression of p-IκBa and p-ERK1/2 and blocked nuclear translocation of NF-κB p65. The results indicate that TSM exerts anti-inflammatory effects related with inhibition on NF-κB and MAPK (p-ERK1/2) signaling pathways. In conclusion, our data demonstrate that TSM might be a potential agent for the treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Antiinflamatorios/farmacología , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Viola/química , Lesión Pulmonar Aguda/inducido químicamente , Animales , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Lipopolisacáridos/efectos adversos , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda