Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Foods ; 13(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338569

RESUMEN

In this paper, the effects on drying time (Y1), the color difference (Y2), unit energy consumption (Y3), polysaccharide content (Y4), rehydration ratio (Y5), and allantoin content (Y6) of yam slices were investigated under different drying temperatures (50-70 °C), slice thicknesses (2-10 mm), and radiation distances (80-160 mm). The optimal drying conditions were determined by applying the BP neural network wolf algorithm (GWO) model based on response surface methodology (RMS). All the above indices were significantly affected by drying conditions (p < 0.05). The drying rate and effective water diffusion coefficient of yam slices accelerated with increasing temperature and decreasing slice thickness and radiation distance. The selection of lower temperature and slice thickness helped reduce the energy consumption and color difference. The polysaccharide content increased and then decreased with drying temperature, slice thickness, and radiation distance, and it was highest at 60 °C, 6 mm, and 120 mm. At 60 °C, lower slice thickness and radiation distance favored the retention of allantoin content. Under the given constraints (minimization of drying time, unit energy consumption, color difference, and maximization of rehydration ratio, polysaccharide content, and allantoin content), BP-GWO was found to have higher coefficients of determination (R2 = 0.9919 to 0.9983) and lower RMSEs (reduced by 61.34% to 80.03%) than RMS. Multi-objective optimization of BP-GWO was carried out to obtain the optimal drying conditions, as follows: temperature 63.57 °C, slice thickness 4.27 mm, radiation distance 91.39 mm, corresponding to the optimal indices, as follows: Y1 = 133.71 min, Y2 = 7.26, Y3 = 8.54 kJ·h·kg-1, Y4 = 20.73 mg/g, Y5 = 2.84 kg/kg, and Y6 = 3.69 µg/g. In the experimental verification of the prediction results, the relative error between the actual and predicted values was less than 5%, proving the model's reliability for other materials in the drying technology process research to provide a reference.

2.
Front Plant Sci ; 15: 1289783, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38501134

RESUMEN

To monitor the moisture content of agricultural products in the drying process in real time, this study applied a model combining multi-sensor fusion and convolutional neural network (CNN) to moisture content online detection. This study built a multi-sensor data acquisition platform and established a CNN prediction model with the raw monitoring data of load sensor, air velocity sensor, temperature sensor, and the tray position as input and the weight of the material as output. The model's predictive performance was compared with that of the linear partial least squares regression (PLSR) and nonlinear support vector machine (SVM) models. A moisture content online detection system was established based on this model. Results of the model performance comparison showed that the CNN prediction model had the optimal prediction effect, with the determination coefficient (R2) and root mean square error (RMSE) of 0.9989 and 6.9, respectively, which were significantly better than those of the other two models. Results of validation experiments showed that the detection system met the requirements of moisture content online detection in the drying process of agricultural products. The R2 and RMSE were 0.9901 and 1.47, respectively, indicating the good performance of the model combining multi-sensor fusion and CNN in moisture content online detection for agricultural products in the drying process. The moisture content online detection system established in this study is of great significance for researching new drying processes and realizing the intelligent development of drying equipment. It also provides a reference for online detection of other indexes in the drying process of agricultural products.

3.
Foods ; 12(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37628048

RESUMEN

Using hot air drying (HAD) and combined infrared hot air drying (IR-HAD) test devices, the drying kinetics, unit energy consumption, color difference values, rehydration rate, microstructure, and changes in polysaccharide and allantoin contents of yam slices were examined at various temperatures (50 °C, 55 °C, 60 °C, 65 °C, and 70 °C). The findings demonstrated that each of the aforementioned parameters was significantly impacted by the drying temperature. IR-HAD dries quicker and takes less time to dry than HAD. The Deff of IR-HAD is higher than that of HAD at the same temperature and increases with the increase in temperature. The activation energy required for IR-HAD (26.35 kJ/mol) is lower than that required for HAD (32.53 kJ/mol). HAD uses more energy per unit than IR-HAD by a factor of greater than 1.3. Yam slices treated with IR-HAD had higher microscopic porosity, better rehydration, lower color difference values, and higher polysaccharide and allantoin levels than HAD-treated yam slices. The IR-HAD at 60 °C had the greatest comprehensive rating after a thorough analysis of the dried yam slices using the coefficient of variation method. Three statistical indicators were used to evaluate six thin-layer drying models, and the Weibull model was most applicable to describe the variation of drying characteristics of yam slices.

4.
Plants (Basel) ; 12(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37375883

RESUMEN

A drying temperature precision control system was studied to provide technical support for developing and further proving the superiority of the variable-temperature drying process. In this study, an improved neural network (INN) proportional-integral-derivative (PID) controller (INN-PID) was designed. The dynamic performance of the PID, neural network PID (NN-PID) and INN-PID controllers was simulated with unit step signals as an input in MATLAB software. A drying temperature precision control system was set up in an air impingement dryer, and the drying temperature control experiment was carried out to verify the performance of the three controllers. Linear variable-temperature (LVT) and constant-temperature drying experiments of cantaloupe slices were carried out based on the system. Moreover, the experimental results were evaluated comprehensively with the brightness (L value), colour difference (ΔE), vitamin C content, chewiness, drying time and energy consumption (EC) as evaluation indexes. The simulation results show that the INN-PID controller outperforms the other two controllers in terms of control accuracy and regulation time. In the drying temperature control experiment at 50 °C-55 °C, the peak time of the INN-PID controller is 237.37 s, the regulation time is 134.91 s and the maximum overshoot is 4.74%. The INN-PID controller can quickly and effectively regulate the temperature of the inner chamber of the air impingement dryer. Compared with constant-temperature drying, LVT is a more effective drying mode as it ensures the quality of the material and reduces the drying time and EC. The drying temperature precision control system based on the INN-PID controller meets the temperature control requirements of the variable-temperature drying process. This system provides practical and effective technical support for the variable-temperature drying process and lays the foundation for further research. The LVT drying experiments of cantaloupe slices also show that variable-temperature drying is a better process than constant-temperature drying and is worthy of further study to be applied in production.

5.
Foods ; 12(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37174434

RESUMEN

This study combined an artificial neural network (ANN) with a genetic algorithm (GA) to obtain the model and optimal process parameters of drying-assisted walnut breaking. Walnuts were dried at different IR temperatures (40 °C, 45 °C, 50 °C, and 55 °C) and air velocities (1, 2, 3, and 4 m/s) to different moisture contents (10%, 15%, 20%, and 25%) by using air-impingement technology. Subsequently, the dried walnuts were broken in different loading directions (sutural, longitudinal, and vertical). The drying time (DT), specific energy consumption (SEC), high kernel rate (HR), whole kernel rate (WR), and shell-breaking rate (SR) were determined as response variables. An ANN optimized by a GA was applied to simulate the influence of IR temperature, air velocity, moisture content, and loading direction on the five response variables, from which the objective functions of DT, SEC, HR, WR, and SR were developed. A GA was applied for the simultaneous maximization of HR, WR, and SR and minimization of DT and SEC to determine the optimized process parameters. The ANN model had a satisfactory prediction ability, with the coefficients of determination of 0.996, 0.998, 0.990, 0.991, and 0.993 for DT, SEC, HR, WR, and SR, respectively. The optimized process parameters were found to be 54.9 °C of IR temperature, 3.66 m/s of air velocity, 10.9% of moisture content, and vertical loading direction. The model combining an ANN and a GA was proven to be an effective method for predicting and optimizing the process parameters of walnut breaking. The predicted values under optimized process parameters fitted the experimental data well, with a low relative error value of 2.51-3.96%. This study can help improve the quality of walnut breaking, processing efficiency, and energy conservation. The ANN modeling and GA multiobjective optimization method developed in this study provide references for the process optimization of walnut and other similar commodities.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda