RESUMEN
The pursuit of discovering new high-temperature superconductors that diverge from the copper-based model1-3 has profound implications for explaining mechanisms behind superconductivity and may also enable new applications4-8. Here our investigation shows that the application of pressure effectively suppresses the spin-charge order in trilayer nickelate La4Ni3O10-δ single crystals, leading to the emergence of superconductivity with a maximum critical temperature (Tc) of around 30 K at 69.0 GPa. The d.c. susceptibility measurements confirm a substantial diamagnetic response below Tc, indicating the presence of bulk superconductivity with a volume fraction exceeding 80%. In the normal state, we observe a strange metal behaviour, characterized by a linear temperature-dependent resistance extending up to 300 K. Furthermore, the layer-dependent superconductivity observed hints at a unique interlayer coupling mechanism specific to nickelates, setting them apart from cuprates in this regard. Our findings provide crucial insights into the fundamental mechanisms underpinning superconductivity, while also introducing a new material platform to explore the intricate interplay between the spin-charge order, flat band structures, interlayer coupling, strange metal behaviour and high-temperature superconductivity.
RESUMEN
High pressure induces dramatic changes and novel phenomena in condensed volatiles1,2 that are usually not preserved after recovery from pressure vessels. Here we report a process that pressurizes volatiles into nanopores of type 1 glassy carbon precursors, converts glassy carbon into nanocrystalline diamond by heating and synthesizes free-standing nanostructured diamond capsules (NDCs) capable of permanently preserving volatiles at high pressures, even after release back to ambient conditions for various vacuum-based diagnostic probes including electron microscopy. As a demonstration, we perform a comprehensive study of a high-pressure argon sample preserved in NDCs. Synchrotron X-ray diffraction and high-resolution transmission electron microscopy show nanometre-sized argon crystals at around 22.0 gigapascals embedded in nanocrystalline diamond, energy-dispersive Xray spectroscopy provides quantitative compositional analysis and electron energy-loss spectroscopy details the chemical bonding nature of high-pressure argon. The preserved pressure of the argon sample inside NDCs can be tuned by controlling NDC synthesis pressure. To test the general applicability of the NDC process, we show that high-pressure neon can also be trapped in NDCs and that type 2 glassy carbon can be used as the precursor container material. Further experiments on other volatiles and carbon allotropes open the possibility of bringing high-pressure explorations on a par with mainstream condensed-matter investigations and applications.
RESUMEN
High-pressure transitions are thought to modify hydrogen molecules to a molecular metallic solid and finally to an atomic metal1, which is predicted to have exotic physical properties and the topology of a two-component (electron and proton) superconducting superfluid condensate2,3. Therefore, understanding such transitions remains an important objective in condensed matter physics4,5. However, measurements of the crystal structure of solid hydrogen, which provides crucial information about the metallization of hydrogen under compression, are lacking for most high-pressure phases, owing to the considerable technical challenges involved in X-ray and neutron diffraction measurements under extreme conditions. Here we present a single-crystal X-ray diffraction study of solid hydrogen at pressures of up to 254 gigapascals that reveals the crystallographic nature of the transitions from phase I to phases III and IV. Under compression, hydrogen molecules remain in the hexagonal close-packed (hcp) crystal lattice structure, accompanied by a monotonic increase in anisotropy. In addition, the pressure-dependent decrease of the unit cell volume exhibits a slope change when entering phase IV, suggesting a second-order isostructural phase transition. Our results indicate that the precursor to the exotic two-component atomic hydrogen may consist of electronic transitions caused by a highly distorted hcp Brillouin zone and molecular-symmetry breaking.
Asunto(s)
Hidrógeno/química , Modelos Moleculares , Presión , Electrónica , Difracción de Neutrones , Transición de Fase , Difracción de Rayos XRESUMEN
Two-dimensional van der Waals heterostructures (2D-vdWHs) based on transition metal dichalcogenides (TMDs) provide unparalleled control over electronic properties. However, the interlayer coupling is challenged by the interfacial misalignment and defects, which hinders a comprehensive understanding of the intertwined electronic orders, especially superconductivity and charge density wave (CDW). Here, by using pressure to regulate the interlayer coupling of non-centrosymmetric 6R-TaS2 vdWHs, we observe an unprecedented phase diagram in TMDs. This phase diagram encompasses successive suppression of the original CDW states from alternating H-layer and T-layer configurations, the emergence and disappearance of a new CDW-like state, and a double superconducting dome induced by different interlayer coupling effects. These results not only illuminate the crucial role of interlayer coupling in shaping the complex phase diagram of TMD systems but also pave a new avenue for the creation of a novel family of bulk heterostructures with customized 2D properties.
RESUMEN
Two-dimensional (2D) van der Waals heterostructures (VDWHs) containing a charge-density wave (CDW) and superconductivity (SC) have revealed rich tunability in their properties, which provide a new route for optimizing their novel exotic states. The interaction between SC and CDW is critical to its properties; however, understanding this interaction within VDWHs is very limited. A comprehensive in situ study and theoretical calculation on bulk 4Hb-TaSe2 VDWHs consisting of alternately stacking 1T-TaSe2 and 1H-TaSe2 monolayers are investigated under high pressure. Surprisingly, the superconductivity competes with the intralayer and adjacent-layer CDW order in 4Hb-TaSe2, which results in substantially and continually boosted superconductivity under compression. Upon total suppression of the CDW, the superconductivity in the individual layers responds differently to the charge transfer. Our results provide an excellent method to efficiently tune the interplay between SC and CDW in VDWHs and a new avenue for designing materials with tailored properties.
RESUMEN
Nanofibers were prepared by electrospinning a mixture of polycaprolactone and silica, and modified to improve the hydrophilicity and stability of the material and to degrade nitrogenous wastewater by adsorbing heterotrophic nitrifying aerobic denitrifying (Ochrobactrum anthropic). The immobilized bacteria showed highly efficient simultaneous nitrification-denitrification ability, which could convert nearly 90 % of the initial nitrogen into gaseous nitrogen under aerobic conditions, and the average TN removal rate reached 5.59 mg/L/h. The average ammonia oxidation rate of bacteria immobilized by modified nanofibers was 7.36 mg/L/h, compared with 6.3 mg/L/h for free bacteria and only 4.23 mg/L/h for unmodified nanofiber-immobilized bacteria. Kinetic studies showed that modified nanofiber-immobilized bacteria complied with first-order degradation kinetics, and the effects of extreme pH, temperature, and salinity on immobilized bacteria were significantly reduced, while the degradation rate of free bacteria produced larger fluctuations. In addition, the immobilized bacterial nanofibers were reused five times, and the degradation rate remained stable at more than 80 %. At the same time, the degradation rate can still reach 50 % after 6 months of storage at 4 °C. It also demonstrated good nitrogen removal in practical wastewater treatment.
Asunto(s)
Nanofibras , Aguas Residuales , Desnitrificación , Nitritos/metabolismo , Nitrógeno/metabolismo , Cinética , Aerobiosis , Nitrificación , Bacterias/metabolismo , Procesos HeterotróficosRESUMEN
Carotenoids are tetraterpene compounds acting as precursors to vitamin A, with functions that include protecting eyesight, enhancing immunity, promoting cell growth and differentiation, and providing antioxidative benefits. Lycopene, ß-carotene, and astaxanthin are particularly critical for health and have diverse applications in food, health products, and medicine. However, natural carotenoids are encased within cell structures, necessitating mechanical methods to disrupt the cell wall for their extraction and purification-a process often influenced by environmental conditions. Thus, improving the efficiency of carotenoid extraction from natural resources is of great interest. This review delves into the research progress made on the extraction processes, structures, and biological functions of carotenoids, focusing on lycopene, ß-carotene, and astaxanthin. Traditional extraction methods primarily involve organic solvent-assisted mechanical crushing. With deeper research and technological advancements, more environmentally friendly solvents, advanced machinery, and suitable methods are being employed to enhance the extraction and purification of carotenoids. These improvements have significantly increased extraction efficiency, reduced preparation time, and lowered production costs, laying the groundwork for new carotenoid product developments.
Asunto(s)
Licopeno , Xantófilas , beta Caroteno , beta Caroteno/química , beta Caroteno/aislamiento & purificación , Xantófilas/aislamiento & purificación , Xantófilas/química , Licopeno/química , Licopeno/aislamiento & purificación , Carotenoides/química , Carotenoides/aislamiento & purificación , Solventes/químicaRESUMEN
BACKGROUND: In order to improve the tenderness of dried shrimp products as well as to reduce the hardness of the meat during the drying process, shrimp were treated with ultrasound combined with pineapple protease and the tenderization condition was optimized by measuring the texture and shear force of dried shrimp. In addition, the sulfhydryl content, myofibril fragmentation index (MFI) and microstructure were also examined to clarify the mechanisms of shrimp tenderization. RESULTS: The results showed UB1 group with ultrasonic power of 100 W, heating temperature of 50 °C and pineapple protease concentration of 20 U mL-1 were the optimum tenderization conditions, where shrimp showed the lowest hardness (490.76 g) and shear force (2006.35 gf). Microstructure as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis results suggested that during the tenderization process the muscle segments of shrimps were broken, degradation of myofibrillar proteins occurred, and MFI values and total sulfhydryl content increased significantly (P < 0.05) (MFI value = 193.6 and total sulfhydryl content = 93.93 mmol mg-1 protein for UB 1 group). CONCLUSION: Ultrasound combined with bromelain could be used as a simple and effective tenderization method for the production of tender dried shrimp. The best conditions were 100 W ultrasonic power, 50 °C ultrasonic temperature, and 20 U mL-1 bromelain. © 2024 Society of Chemical Industry.
Asunto(s)
Ananas , Bromelaínas , Bromelaínas/análisis , Bromelaínas/metabolismo , Alimentos Marinos/análisis , Carne/análisis , Proteínas/metabolismo , Miofibrillas/químicaRESUMEN
Organic-inorganic halide perovskites possess unique electronic configurations and high structural tunability, rendering them promising for photovoltaic and optoelectronic applications. Despite significant progress in optimizing the structural characteristics of the organic cations and inorganic framework, the role of organic-inorganic interactions in determining the structural and optical properties has long been underappreciated and remains unclear. Here, by employing pressure tuning, we realize continuous regulation of organic-inorganic interactions in a lead halide perovskite, MHyPbBr3 (MHy+ = methylhydrazinium, CH3NH2NH2+). Compression enhances the organic-inorganic interactions by strengthening the Pb-N coordinate bonding and N-H···Br hydrogen bonding, which results in a higher structural distortion in the inorganic framework. Consequently, the second-harmonic-generation (SHG) intensity experiences an 18-fold increase at 1.5 GPa, and the order-disorder phase transition temperature of MHyPbBr3 increases from 408 K under ambient pressure to 454 K at the industrially achievable level of 0.5 GPa. Further compression triggers a sudden non-centrosymmetric to centrosymmetric phase transition, accompanied by an anomalous bandgap increase by 0.44 eV, which stands as the largest boost in all known halide perovskites. Our findings shed light on the intricate correlations among organic-inorganic interactions, octahedral distortion, and SHG properties and, more broadly, provide valuable insights into structural design and property optimization through cation engineering of halide perovskites.
RESUMEN
The application of pressure can achieve novel structures and exotic phenomena in condensed matters. However, such pressure-induced transformations are generally reversible and useless for engineering materials for ambient-environment applications. Here, we report comprehensive high-pressure investigations on a series of Dion-Jacobson (D-J) perovskites A'A n-1Pb n I3n+1 [A' = 3-(aminomethyl) piperidinium (3AMP), A = methylammonium (MA), n = 1, 2, 4]. Our study demonstrates their irreversible behavior, which suggests pressure/strain engineering could viably improve light-absorber material not only in situ but also ex situ, thus potentially fostering the development of optoelectronic and electroluminescent materials. We discovered that the photoluminescence (PL) intensities are remarkably enhanced by one order of magnitude at mild pressures. Also, higher pressure significantly changes the lattices, boundary conditions of electronic wave functions, and possibly leads to semiconductor-metal transitions. For (3AMP)(MA)3Pb4I13, permanent recrystallization from 2D to three-dimensional (3D) structure occurs upon decompression, with dramatic changes in optical properties.
RESUMEN
Ice amorphization, low- to high-density amorphous (LDA-HDA) transition, as well as (re)crystallization in ice, under compression have been studied extensively due to their fundamental importance in materials science and polyamorphism. However, the nature of the multiple-step "reverse" transformation from metastable high-pressure ice to the stable crystalline form under reduced pressure is not well understood. Here, we characterize the rate and temperature dependence of the structural evolution from ice VII to ice I recovered at low pressure (â¼5 mTorr) using in situ time-resolved X-ray diffraction. Unlike previously reported ice VII (or ice VIII)âLDAâice I transitions, we reveal three temperature-dependent successive transformations: conversion of ice VII into HDA, followed by HDA-to-LDA transition, and then crystallization of LDA into ice I. Significantly, the temperature-dependent characteristic times indicate distinctive thermal activation mechanisms above and below 110-115 K for both ice VIII-to-HDA and HDA-to-LDA transitions. Large-scale molecular-dynamics calculations show that the structural evolution from HDA to LDA is continuous and involves substantial movements of the water molecules at the nanoscale. The results provide a perspective on the interrelationship of polyamorphism and unravel its underpinning complexities in shaping ice-transition kinetic pathways.
RESUMEN
BACKGROUND: Iron-deficiency anemia is one severe micronutrient malnutrition and has captured worldwide attention. This study evaluated the in vitro iron absorption of two iron-binding proteins (hemoglobin and ferritin) from Tegillarca granosa. In addition, the protein structure-iron absorption relationship and the regulatory effect of hepcidin on cellular iron absorption were explored. RESULTS: Our findings revealed that both hemoglobin and ferritin extracted from T. granosa contained abundant iron-binding sites, as evidenced by stronger peaks in amide I and II regions compared with the two proteins from humans. Less ß-sheet (27.67%) structures were found in hemoglobin compared with ferritin (36.40%), probably contributing to its greater digestibility and more release of available iron. This was confirmed by the results of Caco-2/HepG2 cell culture system that showed iron absorption of hemoglobin was 26.10-39.31% higher than that of ferritin with an iron content of 50-150 µmol L-1 . This high iron absorption of hemoglobin (117.86-174.10 ng mg-1 ) could also be due to more hepcidin produced by HepG2 cells, thereby preventing ferroportin-mediated iron efflux from Caco-2 cells. In addition, the possible risk of oxidative stress was evaluated in cells post-iron exposure. In comparison with ferrous sulfate, a common iron supplement, Caco-2 cells treated with the iron-binding proteins had a 9.50-25.73% lower level of intracellular reactive oxygen species, indicating the safety of hemoglobin and ferritin. CONCLUSION: Collectively, the data of this research would be helpful for understanding the key features and potential of developing hemoglobin and ferritin from T. granosa as novel iron supplements. © 2022 Society of Chemical Industry.
Asunto(s)
Hepcidinas , Hierro , Humanos , Células CACO-2 , Técnicas de Cocultivo , Digestión , Ferritinas/metabolismo , Hemoglobinas , Hepcidinas/metabolismo , Hierro/metabolismo , Arcidae , Animales , Células Hep G2RESUMEN
BACKGROUND: Frozen storage often leads to quality deterioration of surimi-based products. At present, most of the research focuses on improving the quality of surimi products by adding cryoprotectants, and there are few studies available on preparation technology. Therefore, the effects of different gelation-freezing treatments, high temperature heating-freezing treatment (HF), low temperature heating-high temperature heating-freezing treatment (LHF) and low temperature heating-freezing-high temperature heating treatment (LFH) on the quality changes of surimi gels containing hydroxypropyl distarch phosphate (HPDSP) during frozen storage were investigated. RESULTS: With the extension of frozen storage time, the quality of surimi gel in all groups decreased, but the quality of surimi gel with HPDSP was better than that of surimi gel without HPDSP. Compared with HF and LHF, the change range of breaking force, hardness, gumminess, whiteness and disulfide bond content of HPDSP-surimi gel treated with LFH was the least during the frozen storage. In the reheating process of LFH, HPDSP could absorb the water lost during freezing. Therefore, the change in the transverse relaxation time of HPDSP-surimi gels treated with LFH was smaller, with more immobile water and less free water and P22 of 96.81% and P23 of 0% at 16 weeks. In addition, the breaking deformation, cohesiveness, resilience, springiness and protein composition of surimi gels with and without HPDSP treated with HF, LHF and LFH did not change significantly during frozen storage. CONCLUSION: The combination of LFH and HPDSP could effectively reduce the quality change of surimi gel during frozen storage. © 2023 Society of Chemical Industry.
Asunto(s)
Crioprotectores , Agua , Congelación , Crioprotectores/farmacología , Geles/química , Productos Pesqueros/análisis , Manipulación de Alimentos , Proteínas de Peces/químicaRESUMEN
BACKGROUND: Changes in the physicochemical properties of shrimp meat treated with two-stage heating were investigated. Currently, shrimp products in the processing process are susceptible to uneven dehydration, shrimp meat shrinkage, which results in rough and hard texture, poor chewiness, and seriously affects the edible quality as well as economic benefits. Improving the utilization value of shrimp resources, expanding its market shares, optimizing the tenderness of shrimp is the key to developing new types of fresh and ready-to-eat shrimp products. RESULTS: The results indicated that preheating at 30 °C could not affect the quality of shrimp meat significantly (P > 0.05). As the preheating temperature increased from 40 °C to 50 °C, the hardness and shear force of shrimp meat decreased due to the exposure of protein hydrophobic groups, protein aggregation and degradation, muscle fraction broken, and weight loss increase. Further increase in preheating temperature would lead to further aggregation and gelation of proteins, causing hardness and shear force increase. Besides, the results of microstructure showed that preheating at 40 °C and 50 °C could cause the shrimp muscles to become loose. CONCLUSION: This study showed that the preheating temperature ranging from 40 °C to 50 °C could effectively improve the tenderness of shrimp meat. This study might be useful for developing tenderized shrimp products in the future. © 2022 Society of Chemical Industry.
Asunto(s)
Penaeidae , Animales , Penaeidae/química , Calefacción , Carne/análisis , Alimentos Marinos , TemperaturaRESUMEN
Low-dimensional (low-D) organic metal halide hybrids (OMHHs) have emerged as fascinating candidates for optoelectronics due to their integrated properties from both organic and inorganic components. However, for most of low-D OMHHs, especially the zero-D (0D) compounds, the inferior electronic coupling between organic ligands and inorganic metal halides prevents efficient charge transfer at the hybrid interfaces and thus limits their further tunability of optical and electronic properties. Here, using pressure to regulate the interfacial interactions, efficient charge transfer from organic ligands to metal halides is achieved, which leads to a near-unity photoluminescence quantum yield (PLQY) at around 6.0â GPa in a 0D OMHH, [(C6 H5 )4 P]2 SbCl5 . In situ experimental characterizations and theoretical simulations reveal that the pressure-induced electronic coupling between the lone-pair electrons of Sb3+ and the π electrons of benzene ring (lp-π interaction) serves as an unexpected "bridge" for the charge transfer. Our work opens a versatile strategy for the new materials design by manipulating the lp-π interactions in organic-inorganic hybrid systems.
RESUMEN
Metal halide perovskites have emerged as promising materials for optoelectronic applications in the last decade. A large amount of effort has been made to investigate the interplay between the crystalline lattice and photoexcited charge carriers as it is vital to their optoelectronic performance. Among them, ultrafast laser spectroscopy has been intensively utilized to explore the charge carrier dynamics of perovskites, from which the local structural information can only be extracted indirectly. Here, we have applied a time-resolved X-ray diffraction technique to investigate the structural dynamics of prototypical two-dimensional lead-free halide perovskite Cs3Bi2Br9 nanoparticles across temporal scales from 80 ps to microseconds. We observed a quick recoverable (a few ns) photoinduced microstrain up to 0.15% and a long existing lattice expansion (â¼a few hundred nanoseconds) at mild laser fluence. Once the laser flux exceeds 1.4 mJ/cm2, the microstrain saturates and the crystalline phase partially transfers into a disordered phase. This photoinduced transient structural change can recover within the nanosecond time scale. These results indicate that photoexcitation of charge carriers couples with lattice distortion, which fundamentally affects the dielectric environment and charge carrier transport.
RESUMEN
The distribution, accumulation and circulation of oxygen and hydrogen in Earth's interior dictate the geochemical evolution of the hydrosphere, atmosphere and biosphere. The oxygen-rich atmosphere and iron-rich core represent two end-members of the oxygen-iron (O-Fe) system, overlapping with the entire pressure-temperature-composition range of the planet. The extreme pressure and temperature conditions of the deep interior alter the oxidation states, spin states and phase stabilities of iron oxides, creating new stoichiometries, such as Fe4O5 (ref. 5) and Fe5O6 (ref. 6). Such interactions between O and Fe dictate Earth's formation, the separation of the core and mantle, and the evolution of the atmosphere. Iron, in its multiple oxidation states, controls the oxygen fugacity and oxygen budget, with hydrogen having a key role in the reaction of Fe and O (causing iron to rust in humid air). Here we use first-principles calculations and experiments to identify a highly stable, pyrite-structured iron oxide (FeO2) at 76 gigapascals and 1,800 kelvin that holds an excessive amount of oxygen. We show that the mineral goethite, FeOOH, which exists ubiquitously as 'rust' and is concentrated in bog iron ore, decomposes under the deep lower-mantle conditions to form FeO2 and release H2. The reaction could cause accumulation of the heavy FeO2-bearing patches in the deep lower mantle, upward migration of hydrogen, and separation of the oxygen and hydrogen cycles. This process provides an alternative interpretation for the origin of seismic and geochemical anomalies in the deep lower mantle, as well as a sporadic O2 source for the Great Oxidation Event over two billion years ago that created the present oxygen-rich atmosphere.
Asunto(s)
Atmósfera/química , Planeta Tierra , Compuestos Férricos/química , Hidrógeno/química , Compuestos de Hierro/química , Minerales/química , Oxígeno/química , Ecosistema , Historia Antigua , Hierro/química , Oxidación-Reducción , Oxígeno/análisis , Presión , Sulfuros/química , TemperaturaRESUMEN
We report here the purification of a novel metal-binding protein from Oratosquilla oratoria (O. oratoria MT-1) by gel and ion-exchange chromatography. SDS-PAGE and MALDI-TOF analyses demonstrated that isolated O. oratoria MT-1 was of high purity with a molecular weight of 12.4 kDa. The fluorescence response to SBD-F derivatives revealed that O. oratoria MT-1 contained a large number of sulfhydryl groups, which is a general property of metallothioneins. Zn and Cu metal stoichiometries for O. oratoria MT-1 were 3.97:1 and 0.55:1, respectively. The proportion of cysteine (Cys) residues in the amino acid composition was 32.69%, and aromatic amino acids were absent. The peptide sequence coverage with Macrobrachium rosenbergii calmodulin (accession AOA3S8FSK5) was 60%. Infrared spectroscopy of O. oratoria MT-1 revealed two obvious peaks at absorption frequencies for the amide I band and the amide II band. CD spectra revealed that the secondary structure was mainly composed of random coil (57.6%) and ß-sheet (39.9%). An evaluation of in vitro antioxidant activity revealed that isolated O. oratoria MT-1 has strong reducing activities, exhibiting scavenging rates for DPPH and OH of 77.8% and 75.8%, respectively (IC50 values 0.57 mg/mL and 1.1 mg/mL). O. oratoria MT-1 may be used as a functional additive in cosmetics, health foods, and medical products, as well as a reference material for quantitative analysis of metallothionein in such products.
Asunto(s)
Antioxidantes , Metalotioneína , Amidas , Animales , Antioxidantes/farmacología , Crustáceos , Estructura Secundaria de ProteínaRESUMEN
Materials with multi-stabilities controllable by external stimuli have potential for high-capacity information storage and switch devices. Herein, we report the observation of pressure-driven two-step second-harmonic-generation (SHG) switching in polar BiOIO3 for the first time. Structure analyses reveal two pressure-induced phase transitions in BiOIO3 from the ambient noncentrosymmetric phase (SHG-high) to an intermediate noncentrosymmetric phase (SHG-intermediate) and then to a centrosymmetric phase (SHG-off). The three-state SHG switching was inspected by inâ situ high-pressure powder SHG and polarization-dependent single-crystal SHG measurements. Local structure analyses based on the inâ situ Raman spectra and X-ray absorption spectra reveal that the SHG switching is caused by the step-wise suppression of lone-pair electrons on the [IO3 ]- units. The dramatic evolution of the functional units under compression also leads to subtle changes of the optical absorption edge of BiOIO3 . Materials with switchable multi-stabilities provide a state-of-art platform for next-generation switch and information storage devices.
RESUMEN
Pressure processing is efficient to regulate the structural and physical properties of two-dimensional (2D) halide perovskites which have been emerging for advanced photovoltaic and light-emitting applications. Increasing numbers of studies have reported pressure-induced and/or enhanced emission properties in the 2D halide perovskites. However, no research has focused on their photoresponse properties under pressure tuning. It is also unclear how structural change affects their excitonic features, which govern the optoelectronic properties of the halide perovskites. Herein, we report significantly enhanced photocurrents in the all-inorganic 2D perovskite Cs2PbI2Cl2, achieving over 3 orders of magnitude increase at the industrially achievable level of 2 GPa in comparison with its initial photocurrent. Lattice compression effectively regulates the excitonic features of Cs2PbI2Cl2, reducing the exciton binding energy considerably from 133 meV at ambient conditions to 78 meV at 2.1 GPa. Impressively, such a reduced exciton binding energy of 2D Cs2PbI2Cl2 is comparable to the values of typical 3D perovskites (MAPbBr3 and MAPbI3), facilitating the dissociating of excitons into free carriers and enhancing the photocurrent. Further pressurization leads to a layer-sliding-induced phase transition and an anomalous negative linear compression, which has not been observed so far in other halide perovskites. Our findings reveal the dramatically enhanced photocurrents in the 2D halide perovskite by regulating its excitonic features and, more broadly, provide new insights into materials design toward extraordinary properties.