Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Small ; 20(11): e2307219, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37882353

RESUMEN

High power conversion efficiencies (PCEs) in perovskite solar cells (PSCs) have always been awe-inspiring, but perovskite films scalability is an exacting precondition for PSCs commercial deployment, generally unachievable through the antisolvent technique. On the contrary, in the two-step sequential method, the perovskite's uncontrolled crystallization and unnecessary PbI2 residue impede the device's performance. These two issues motivated to empower the PbI2 substrate with orthorhombic RbPbI3 crystal seeds, which act as grown nuclei and develop orientated perovskites lattice stacks, improving the perovskite films morphologically and reducing the PbI2 content in eventual perovskite films. Thence, achieving a PCE of 24.17% with suppressed voltage losses and an impressive life span of 1140 h in the open air.

2.
J Hazard Mater ; 442: 130087, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36206715

RESUMEN

Environmental persistent free radicals (EPFRs) are new environmental health risk substances in the atmosphere, and their oxidative toxicity (OT) has not been strongly confirmed. In this study, the fugitive characteristics of EPFRs in road dust in a metropolitan city located in northwest China, and their potential oxidative toxicity were investigated. The results showed that the road dust contains Carbon-centered EPFRs with the mean mass concentration of (6.6 ± 5.0) × 1017 spins/g. EPFRs in road dust are degradable and have a half-life of 4.5 years. The water insoluble (WIS) components contribute 71% to the oxidative toxicity of road dust and show a rapid toxicity generation process, while the oxidative toxicity generation rate of water-soluble dust is more stable. Based on the positive matrix factorization (PMF) model, the contribution of EPFRs-dominated factors to Total-OT and WIS-OT is 17.3% and 33.3%, respectively. The PMF model results indicated that different types of EPFRs contributed differently to the oxidative toxicity of road dust and Carbon-centered EPFRs are more likely to participate in reactive oxygen species generation. Our results highlight that the EPFRs are an important contributor to the oxidative toxicity of atmospheric particulate matter, and their oxidative toxicity is dependent on the types of free radicals. It also provides an important insight into the influence of other potentially toxic substances on the oxidative toxicity of atmospheric PM.


Asunto(s)
Contaminantes Atmosféricos , Polvo , Polvo/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Especies Reactivas de Oxígeno , Material Particulado/toxicidad , Material Particulado/análisis , Radicales Libres , Monitoreo del Ambiente , China , Carbono , Agua
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda