Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 4.854
Filtrar
1.
Cell ; 186(4): 850-863.e16, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36803605

RESUMEN

It is unknown whether pangolins, the most trafficked mammals, play a role in the zoonotic transmission of bat coronaviruses. We report the circulation of a novel MERS-like coronavirus in Malayan pangolins, named Manis javanica HKU4-related coronavirus (MjHKU4r-CoV). Among 86 animals, four tested positive by pan-CoV PCR, and seven tested seropositive (11 and 12.8%). Four nearly identical (99.9%) genome sequences were obtained, and one virus was isolated (MjHKU4r-CoV-1). This virus utilizes human dipeptidyl peptidase-4 (hDPP4) as a receptor and host proteases for cell infection, which is enhanced by a furin cleavage site that is absent in all known bat HKU4r-CoVs. The MjHKU4r-CoV-1 spike shows higher binding affinity for hDPP4, and MjHKU4r-CoV-1 has a wider host range than bat HKU4-CoV. MjHKU4r-CoV-1 is infectious and pathogenic in human airways and intestinal organs and in hDPP4-transgenic mice. Our study highlights the importance of pangolins as reservoir hosts of coronaviruses poised for human disease emergence.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Dipeptidil Peptidasa 4 , Pangolines , Animales , Humanos , Ratones , Quirópteros , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Endopeptidasas/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Péptido Hidrolasas/metabolismo , Receptores Virales/metabolismo , Internalización del Virus , Coronavirus/fisiología
2.
Nat Immunol ; 19(9): 1036, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29915300

RESUMEN

In the version of this article initially published, some identification of the supplementary information was incorrect. The items originally called Supplementary Tables 1, 2, 3, 4 and 5 should be Source Data Figures 1, 2, 4, 5 and 7, respectively; those originally called Supplementary Tables 6, 7 and 8 should be Supplementary Tables 1, 2 and 3, respectively; and those originally called Source Data Figures 1, 2, 4, 5 and 7 should be Supplementary Tables 4, 5, 6, 7 and 8, respectively. The errors have been corrected in the HTML version of the article.

3.
Nat Immunol ; 19(3): 279-290, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29434353

RESUMEN

Deletion of master regulators of the B cell lineage reprograms B cells into T cells. Here we found that the transcription factor Hoxb5, which is expressed in uncommitted hematopoietic progenitor cells but is not present in cells committed to the B cell or T cell lineage, was able to reprogram pro-pre-B cells into functional early T cell lineage progenitors. This reprogramming started in the bone marrow and was completed in the thymus and gave rise to T lymphocytes with transcriptomes, hierarchical differentiation, tissue distribution and immunological functions that closely resembled those of their natural counterparts. Hoxb5 repressed B cell 'master genes', activated regulators of T cells and regulated crucial chromatin modifiers in pro-pre-B cells and ultimately drove the B cell fate-to-T cell fate conversion. Our results provide a de novo paradigm for the generation of functional T cells through reprogramming in vivo.


Asunto(s)
Linfocitos B/citología , Linaje de la Célula/inmunología , Reprogramación Celular/inmunología , Proteínas de Homeodominio/inmunología , Linfocitos T/citología , Animales , Diferenciación Celular , Linaje de la Célula/genética , Reprogramación Celular/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Células Precursoras de Linfocitos B/citología
4.
Nature ; 629(8012): 597-602, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658762

RESUMEN

Hydroformylation is an industrial process for the production of aldehydes from alkenes1,2. Regioselective hydroformylation of propene to high-value n-butanal is particularly important, owing to a wide range of bulk applications of n-butanal in the manufacture of various necessities in human daily life3. Supported rhodium (Rh) hydroformylation catalysts, which often excel in catalyst recyclability, ease of separation and adaptability for continuous-flow processes, have been greatly exploited4. Nonetheless, they usually consist of rotationally flexible and sterically unconstrained Rh hydride dicarbonyl centres, only affording limited regioselectivity to n-butanal5-8. Here we show that proper encapsulation of Rh species comprising Rh(I)-gem-dicarbonyl centres within a MEL zeolite framework allows the breaking of the above model. The optimized catalyst exhibits more than 99% regioselectivity to n-butanal and more than 99% selectivity to aldehydes at a product formation turnover frequency (TOF) of 6,500 h-1, surpassing the performance of all heterogeneous and most homogeneous catalysts developed so far. Our comprehensive studies show that the zeolite framework can act as a scaffold to steer the reaction pathway of the intermediates confined in the space between the zeolite framework and Rh centres towards the exclusive formation of n-butanal.

5.
Mol Cell ; 82(17): 3166-3177.e5, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35905736

RESUMEN

Rifampicin (RIF), the frontline drug against M. tuberculosis, is completely ineffective against M. abscessus, partially due to the presence of an ADP-ribosyltransferase (Arr) that inactivates RIF. Using RNA-seq, we show that exposure of M. abscessus to sublethal doses of RIF and Rifabutin (RBT), a close analog of RIF, results in an ∼25-fold upregulation of Mab_helR in laboratory and clinical isolates. An isogenic deletion in Mab_helR results in RIF/RBT hypersensitivity, and overexpression of Mab_helR confers RIF tolerance in M. tuberculosis. We demonstrate an increased HelR-RNAP association in RIF-exposed bacteria and a MabHelR-mediated dissociation of RNAP from stalled initiation complexes in vitro. Finally, we show that the tip of the PCh-loop of Mab_helR, present in proximity to RIF, is critical for conferring RIF resistance but dispensable for dissociation of stalled RNAP complexes, suggesting that HelR-mediated RIF resistance requires a step in addition to displacement of RIF-stalled RNAP.


Asunto(s)
Mycobacterium abscessus , Mycobacterium tuberculosis , Rifamicinas , Tuberculosis , ARN Polimerasas Dirigidas por ADN/genética , Farmacorresistencia Bacteriana/genética , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/genética , Rifabutina/farmacología , Rifampin/farmacología , Rifamicinas/farmacología , Tuberculosis/microbiología
6.
Nat Immunol ; 17(5): 495-504, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27019227

RESUMEN

Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations that disrupt nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts the expression of POLA1, which encodes the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency resulted in increased production of type I interferons. This enzyme is necessary for the synthesis of RNA:DNA primers during DNA replication and, strikingly, we found that POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Together this work identifies POLA1 as a critical regulator of the type I interferon response.


Asunto(s)
ADN Polimerasa I/metabolismo , ADN/biosíntesis , Interferón Tipo I/metabolismo , ARN/biosíntesis , Secuencia de Bases , Células Cultivadas , Citosol/metabolismo , ADN/genética , ADN Polimerasa I/genética , Salud de la Familia , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Masculino , Microscopía Confocal , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Linaje , Trastornos de la Pigmentación/genética , Trastornos de la Pigmentación/metabolismo , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Nature ; 601(7891): 118-124, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34912121

RESUMEN

The skin serves as a physical barrier and an immunological interface that protects the body from the external environment1-3. Aberrant activation of immune cells can induce common skin autoimmune diseases such as vitiligo, which are often characterized by bilateral symmetric lesions in certain anatomic regions of the body4-6. Understanding what orchestrates the activities of cutaneous immune cells at an organ level is necessary for the treatment of autoimmune diseases. Here we identify subsets of dermal fibroblasts that are responsible for driving patterned autoimmune activity, by using a robust mouse model of vitiligo that is based on the activation of endogenous auto-reactive CD8+ T cells that target epidermal melanocytes. Using a combination of single-cell analysis of skin samples from patients with vitiligo, cell-type-specific genetic knockouts and engraftment experiments, we find that among multiple interferon-γ (IFNγ)-responsive cell types in vitiligo-affected skin, dermal fibroblasts are uniquely required to recruit and activate CD8+ cytotoxic T cells through secreted chemokines. Anatomically distinct human dermal fibroblasts exhibit intrinsic differences in the expression of chemokines in response to IFNγ. In mouse models of vitiligo, regional IFNγ-resistant fibroblasts determine the autoimmune pattern of depigmentation in the skin. Our study identifies anatomically distinct fibroblasts with permissive or repressive IFNγ responses as the key determinant of body-level patterns of lesions in vitiligo, and highlights mesenchymal subpopulations as therapeutic targets for treating autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Fibroblastos/inmunología , Piel/inmunología , Piel/patología , Vitíligo/inmunología , Vitíligo/patología , Adolescente , Adulto , Animales , Linfocitos T CD8-positivos/inmunología , Quimiocina CXCL10/inmunología , Quimiocina CXCL9/inmunología , Niño , Modelos Animales de Enfermedad , Femenino , Fibroblastos/patología , Humanos , Interferón gamma/inmunología , Masculino , Melanocitos/inmunología , Melanocitos/patología , Ratones , Persona de Mediana Edad , Comunicación Paracrina , RNA-Seq , Análisis de la Célula Individual , Células del Estroma/inmunología , Linfocitos T Citotóxicos/inmunología , Adulto Joven
8.
Plant Cell ; 36(5): 1868-1891, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299382

RESUMEN

Carotenoids are essential for photosynthesis and photoprotection. Plants must evolve multifaceted regulatory mechanisms to control carotenoid biosynthesis. However, the regulatory mechanisms and the regulators conserved among plant species remain elusive. Phytoene synthase (PSY) catalyzes the highly regulated step of carotenogenesis and geranylgeranyl diphosphate synthase (GGPPS) acts as a hub to interact with GGPP-utilizing enzymes for the synthesis of specific downstream isoprenoids. Here, we report a function of Nudix hydrolase 23 (NUDX23), a Nudix domain-containing protein, in post-translational regulation of PSY and GGPPS for carotenoid biosynthesis. NUDX23 expresses highly in Arabidopsis (Arabidopsis thaliana) leaves. Overexpression of NUDX23 significantly increases PSY and GGPPS protein levels and carotenoid production, whereas knockout of NUDX23 dramatically reduces their abundances and carotenoid accumulation in Arabidopsis. NUDX23 regulates carotenoid biosynthesis via direct interactions with PSY and GGPPS in chloroplasts, which enhances PSY and GGPPS protein stability in a large PSY-GGPPS enzyme complex. NUDX23 was found to co-migrate with PSY and GGPPS proteins and to be required for the enzyme complex assembly. Our findings uncover a regulatory mechanism underlying carotenoid biosynthesis in plants and offer promising genetic tools for developing carotenoid-enriched food crops.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Carotenoides , Regulación de la Expresión Génica de las Plantas , Carotenoides/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Hidrolasas Nudix , Cloroplastos/metabolismo , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Farnesiltransferasa/metabolismo , Farnesiltransferasa/genética , Pirofosfatasas/metabolismo , Pirofosfatasas/genética , Procesamiento Proteico-Postraduccional , Plantas Modificadas Genéticamente , Hojas de la Planta/metabolismo , Hojas de la Planta/genética
9.
Proc Natl Acad Sci U S A ; 121(18): e2400200121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38662550

RESUMEN

Traditional metallic glasses (MGs), based on one or two principal elements, are notoriously known for their lack of tensile ductility at room temperature. Here, we developed a multiprincipal element MG (MPEMG), which exhibits a gigapascal yield strength, significant strain hardening that almost doubles its yield strength, and 2% uniform tensile ductility at room temperature. These remarkable properties stem from the heterogeneous amorphous structure of our MPEMG, which is composed of atoms with significant size mismatch but similar atomic fractions. In sharp contrast to traditional MGs, shear banding in our glass triggers local elemental segregation and subsequent ordering, which transforms shear softening to hardening, hence resulting in shear-band self-halting and extensive plastic flows. Our findings reveal a promising pathway to design stronger, more ductile glasses that can be applied in a wide range of technological fields.

10.
PLoS Pathog ; 20(1): e1011918, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38241414

RESUMEN

Bacterial persister cells, a sub-population of dormant phenotypic variants highly tolerant to antibiotics, present a significant challenge for infection control. Investigating the mechanisms of antibiotic persistence is crucial for developing effective treatment strategies. Here, we found a significant association between tolerance frequency and previous infection history in bovine mastitis. Previous S. aureus infection led to S. aureus tolerance to killing by rifampicin in subsequent infection in vivo and in vitro. Actually, the activation of trained immunity contributed to rifampicin persistence of S. aureus in secondary infection, where it reduced the effectiveness of antibiotic treatment and increased disease severity. Mechanically, we found that S. aureus persistence was mediated by the accumulation of fumarate provoked by trained immunity. Combination therapy with metformin and rifampicin promoted eradication of persisters and improved the severity of recurrent S. aureus infection. These findings provide mechanistic insight into the relationship between trained immunity and S. aureus persistence, while providing proof of concept that trained immunity is a therapeutic target in recurrent bacterial infections involving persistent pathogens.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Femenino , Bovinos , Staphylococcus aureus/fisiología , Rifampin/farmacología , Rifampin/uso terapéutico , Inmunidad Entrenada , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Bacterias
11.
Chem Rev ; 124(6): 3608-3643, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38498933

RESUMEN

The rapid advancement of intelligent manufacturing technology has enabled electronic equipment to achieve synergistic design and programmable optimization through computer-aided engineering. Three-dimensional (3D) printing, with the unique characteristics of near-net-shape forming and mold-free fabrication, serves as an effective medium for the materialization of digital designs into usable devices. This methodology is particularly applicable to gas sensors, where performance can be collaboratively optimized by the tailored design of each internal module including composition, microstructure, and architecture. Meanwhile, diverse 3D printing technologies can realize modularized fabrication according to the application requirements. The integration of artificial intelligence software systems further facilitates the output of precise and dependable signals. Simultaneously, the self-learning capabilities of the system also promote programmable optimization for the hardware, fostering continuous improvement of gas sensors for dynamic environments. This review investigates the latest studies on 3D-printed gas sensor devices and relevant components, elucidating the technical features and advantages of different 3D printing processes. A general testing framework for the performance evaluation of customized gas sensors is proposed. Additionally, it highlights the superiority and challenges of programmable and modularized gas sensors, providing a comprehensive reference for material adjustments, structure design, and process modifications for advanced gas sensor devices.

12.
J Immunol ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194407

RESUMEN

The functions of the natural dsRNA sensors TLR3 (TRIF) and RIG-I (MAVS) are crucial during viral challenge and have not been accurately clarified in adaptive immune responses to rotavirus (RV) infection. In this study, we found that RV infection caused severe pathological damage to the small intestine of TLR3-/- and TRIF-/- mice. Our data found that dendritic cells from TLR3-/- and TRIF-/- mice had impaired Ag presentation to the RV and attenuated initiation of T cells upon viral infection. These attenuated functions resulted in impaired CD4+ T and CD8+ T function in mice lacking TLR3-TRIF signaling postinfection. Additionally, attenuated proliferative capacity of T cells from TLR3-/- and TRIF-/- mice was observed. Subsequently, we observed a significant reduction in the absolute number of memory T cells in the spleen and mesenteric lymph node (MLN) of TRIF-/- recipient mice following RV infection in a bone marrow chimeric model. Furthermore, there was reduced migration of type 2 classical dendritic cells from the intestine to MLNs after RV infection in TLR3-/- and TRIF-/- mice. Notably, RV infection resulted in attenuated killing of spleen and MLN tissues in TRIF-/- and MAVS-/- mice. Finally, we demonstrated that RV infection promoted apoptosis of CD8+ T cells in TRIF-/- and TLR3-/-MAVS-/- mice. Taken together, our findings highlight an important mechanism of TLR3 signaling through TRIF in mucosal T cell responses to RV and lay the foundation for the development of a novel vaccine.

13.
PLoS Genet ; 19(12): e1011060, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38055757

RESUMEN

Mycobacterium abscessus is intrinsically resistant to antibiotics effective against other pathogenic mycobacteria largely due to the drug-induced expression of genes that confer resistance. WhiB7 is a major hub controlling the induction of resistance to ribosome-targeting antibiotics. It activates the expression of >100 genes, 7 of which are known determinants of drug resistance; the function of most genes within the regulon is however unknown, but some conceivably encode additional mechanisms of resistance. Furthermore, the hierarchy of gene expression within the regulon, if any, is poorly understood. In the present work we have identified 56 WhiB7 binding sites using chromatin immunoprecipitation sequencing (CHIP-Seq) which accounts for the WhiB7-dependent upregulation of 72 genes, and find that M. abscessus WhiB7 functions exclusively as a transcriptional activator at promoters recognized by σA/σB. We have investigated the role of 18 WhiB7 regulated genes in drug resistance. Our results suggest that while some genes within the regulon (eg. erm41, hflX, eis2 and the ABCFs) play a major role in resistance, others make smaller contributions (eg. MAB_4324c and MAB_1409c) and the observed hypersensitivity ΔMabwhiB7 is a cumulative effect of these individual contributions. Moreover, our CHIP-Seq data implicate additional roles of WhiB7 induced genes beyond antibiotic resistance. Finally, we identify a σH-dependent network in aminoglycoside and tigecycline resistance which is induced upon drug exposure and is further activated by WhiB7 demonstrating the existence of a crosstalk between components of the WhiB7-dependent and -independent circuits.


Asunto(s)
Antibacterianos , Mycobacterium abscessus , Antibacterianos/farmacología , Mycobacterium abscessus/genética , Mycobacterium abscessus/metabolismo , Tigeciclina/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
14.
Proc Natl Acad Sci U S A ; 120(25): e2301439120, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307482

RESUMEN

Catalysts with a refined electronic structure are highly desirable for promoting the oxygen evolution reaction (OER) kinetics and reduce the charge overpotentials for lithium-oxygen (Li-O2) batteries. However, bridging the orbital interactions inside the catalyst with external orbital coupling between catalysts and intermediates for reinforcing OER catalytic activities remains a grand challenge. Herein, we report a cascaded orbital-oriented hybridization, namely alloying hybridization in intermetallic Pd3Pb followed by intermolecular orbital hybridization between low-energy Pd atom and reaction intermediates, for greatly enhancing the OER electrocatalytic activity in Li-O2 battery. The oriented orbital hybridization in two axes between Pb and Pd first lowers the d band energy level of Pd atoms in the intermetallic Pd3Pb; during the charging process, the low-lying 4dxz/yz and 4dz2 orbital of the Pd further hybridizes with 2π* and 5σ orbitals of lithium superoxide (LiO2) (key reaction intermediate), eventually leading to lower energy levels of antibonding and, thus, weakened orbital interaction toward LiO2. As a consequence, the cascaded orbital-oriented hybridization in intermetallic Pd3Pb considerably decreases the activation energy and accelerates the OER kinetics. The Pd3Pb-based Li-O2 batteries exhibit a low OER overpotential of 0.45 V and superior cycle stability of 175 cycles at a fixed capacity of 1,000 mAh g-1, which is among the best in the reported catalysts. The present work opens up a way for designing sophisticated Li-O2 batteries at the orbital level.

15.
Proc Natl Acad Sci U S A ; 120(21): e2220315120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186847

RESUMEN

The unsatisfactory catalytic activity of nanozymes owing to their inefficient electron transfer (ET) is the major challenge in biomimetic catalysis-related biomedical applications. Inspired by the photoelectron transfers in natural photoenzymes, we herein report a photonanozyme of single-atom Ru anchored on metal-organic frameworks (UiO-67-Ru) for achieving photoenhanced peroxidase (POD)-like activity. We demonstrate that the atomically dispersed Ru sites can realize high photoelectric conversion efficiency, superior POD-like activity (7.0-fold photoactivity enhancement relative to that of UiO-67), and good catalytic specificity. Both in situ experiments and theoretical calculations reveal that photoelectrons follow the cofactor-mediated ET process of enzymes to promote the production of active intermediates and the release of products, demonstrating more favorable thermodynamics and kinetics in H2O2 reduction. Taking advantage of the unique interaction of the Zr-O-P bond, we establish a UiO-67-Ru-based immunoassay platform for the photoenhanced detection of organophosphorus pesticides.


Asunto(s)
Peróxido de Hidrógeno , Plaguicidas , Biomimética , Compuestos Organofosforados , Oxidación-Reducción , Catálisis
16.
J Neurosci ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060175

RESUMEN

Protein synthesis in response to neuronal activity, known as activity-dependent translation, is critical for synaptic plasticity and memory formation. However, the signaling cascades that couple neuronal activity to the translational events remains elusive. In this study, we identified the role of calmodulin (CaM), a conserved Ca2+-binding protein, in rRNA biogenesis in neurons. We found the CaM-regulated rRNA synthesis is Ca2+-dependent and necessary for nascent protein synthesis and axon growth in hippocampal neurons. Mechanistically, CaM interacts with nucleolar DDX21 in a Ca2+-dependent manner to regulate nascent rRNA transcription within nucleoli. We further found CaM alters the conformation of DDX21 to liberate the DDX21-sequestered RPA194, the catalytic subunit of RNA polymerase I, to facilitate transcription of rDNA. Using high-throughput screening, we identified the small molecules Batefenterol and Indacaterol that attenuate the CaM-DDX21 interaction and suppress nascent rRNA synthesis and axon growth in hippocampal neurons. These results unveiled the previously unrecognized role of CaM as a messenger to link the activity-induced Ca2+ influx to the nucleolar events essential for protein synthesis. We thus identified the ability of CaM to transmit information to the nucleoli of neurons in response to stimulation.Significance statement Protein synthesis in response to neuronal activity, known as activity-dependent translation, is critical for synaptic plasticity and long-term memory formation. In this study, we identify the novel role of calmodulin (CaM), a highly conserved Ca2+-binding protein, which is well-known by regulating myriad vital biological processes, in activity-dependent translation by regulating rRNA synthesis in neurons. We find that CaM can shuttle into the nucleolus upon depolarization and modulate the activity-induced de novo rRNA biogenesis, which is associated with ribosome assembly and protein synthesis in neurons. Mechanistically, CaM interacts with DDX21, an RNA helicase directly associated with Pol I subunit, to regulate the transcription of rDNA. Our study demonstrates CaM as a messenger linking neuronal activity to ribosome-dependent protein biosynthesis.

17.
Circulation ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166327

RESUMEN

BACKGROUND: Colchicine has been approved to reduce cardiovascular risk in patients with coronary heart disease on the basis of its potential benefits demonstrated in the COLCOT (Colchicine-Optical Coherence Tomography Trial) and LoDoCo2 studies. Nevertheless, there are limited data available about the specific impact of colchicine on coronary plaques. METHODS: This was a prospective, single-center, randomized, double-blind clinical trial. From May 3, 2021, until August 31, 2022, a total of 128 patients with acute coronary syndrome aged 18 to 80 years with lipid-rich plaque (lipid pool arc >90°) detected by optical coherence tomography were included. The subjects were randomly assigned in a 1:1 ratio to receive either colchicine (0.5 mg once daily) or placebo for 12 months. The primary end point was the change in the minimal fibrous cap thickness from baseline to the 12-month follow-up. RESULTS: Among 128 patients, 52 in the colchicine group and 52 in the placebo group completed the study. The mean age of the 128 patients was 58.0±9.8 years, and 25.0% were female. Compared with placebo, colchicine therapy significantly increased the minimal fibrous cap thickness (51.9 [95% CI, 32.8 to 71.0] µm versus 87.2 [95% CI, 69.9 to 104.5] µm; difference, 34.2 [95% CI, 9.7 to 58.6] µm; P=0.006), and reduced average lipid arc (-25.2° [95% CI, -30.6° to -19.9°] versus -35.7° [95% CI, -40.5° to -30.8°]; difference, -10.5° [95% CI, -17.7° to -3.4°]; P=0.004), mean angular extension of macrophages (-8.9° [95% CI, -13.3° to -4.6°] versus -14.0° [95% CI, -18.0° to -10.0°]; difference, -6.0° [95% CI, -11.8° to -0.2°]; P=0.044), high-sensitivity C-reactive protein level (geometric mean ratio, 0.6 [95% CI, 0.4 to 1.0] versus 0.3 [95% CI, 0.2 to 0.5]; difference, 0.5 [95% CI, 0.3 to 1.0]; P=0.046), interleukin-6 level (geometric mean ratio, 0.8 [95% CI, 0.6 to 1.1] versus 0.5 [95% CI, 0.4 to 0.7]; difference, 0.6 [95% CI, 0.4 to 0.9]; P=0.025), and myeloperoxidase level (geometric mean ratio, 1.0 [95% CI, 0.8 to 1.2] versus 0.8 [95% CI, 0.7 to 0.9]; difference, 0.8 [95% CI, 0.6 to 1.0]; P=0.047). CONCLUSIONS: Our findings suggested that colchicine resulted in favorable effects on coronary plaque stabilization at optical coherence tomography in patients with acute coronary syndrome. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04848857.

18.
J Virol ; 98(4): e0013924, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38501663

RESUMEN

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine enteric coronavirus, and the broad interspecies infection of SADS-CoV poses a potential threat to human health. This study provides experimental evidence to dissect the roles of distinct domains within the SADS-CoV spike S1 subunit in cellular entry. Specifically, we expressed the S1 and its subdomains, S1A and S1B. Cell binding and invasion inhibition assays revealed a preference for the S1B subdomain in binding to the receptors on the cell surface, and this unknown receptor is not utilized by the porcine epidemic diarrhea virus. Nanoparticle display demonstrated hemagglutination of erythrocytes from pigs, humans, and mice, linking the S1A subdomain to the binding of sialic acid (Sia) involved in virus attachment. We successfully rescued GFP-labeled SADS-CoV (rSADS-GFP) from a recombinant cDNA clone to track viral infection. Antisera raised against S1, S1A, or S1B contained highly potent neutralizing antibodies, with anti-S1B showing better efficiency in neutralizing rSADS-GFP infection compared to anti-S1A. Furthermore, depletion of heparan sulfate (HS) by heparinase treatment or pre-incubation of rSADS-GFP with HS or constituent monosaccharides could inhibit SADS-CoV entry. Finally, we demonstrated that active furin cleavage of S glycoprotein and the presence of type II transmembrane serine protease (TMPRSS2) are essential for SADS-CoV infection. These combined observations suggest that the wide cell tropism of SADS-CoV may be related to the distribution of Sia or HS on the cell surface, whereas the S1B contains the main protein receptor binding site. Specific host proteases also play important roles in facilitating SADS-CoV entry.IMPORTANCESwine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel pathogen infecting piglet, and its unique genetic evolution characteristics and broad species tropism suggest the potential for cross-species transmission. The virus enters cells through its spike (S) glycoprotein. In this study, we identify the receptor binding domain on the C-terminal part of the S1 subunit (S1B) of SADS-CoV, whereas the sugar-binding domain located at the S1 N-terminal part of S1 (S1A). Sialic acid, heparan sulfate, and specific host proteases play essential roles in viral attachment and entry. The dissection of SADS-CoV S1 subunit's functional domains and identification of cellular entry cofactors will help to explore the receptors used by SADS-CoV, which may contribute to exploring the mechanisms behind cross-species transmission and host tropism.


Asunto(s)
Alphacoronavirus , Infecciones por Coronavirus , Glicoproteína de la Espiga del Coronavirus , Animales , Humanos , Ratones , Alphacoronavirus/química , Alphacoronavirus/fisiología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Heparitina Sulfato , Ácido N-Acetilneuramínico/metabolismo , Péptido Hidrolasas , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Porcinos
19.
Nat Mater ; 23(1): 52-57, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38052935

RESUMEN

Although metallic nanostructures have been attracting tremendous research interest in nanoscience and nanotechnologies, it is known that environmental attacks, such as surface oxidation, can easily initiate cracking on the surface of metals, thus deteriorating their overall functional/structural properties1-3. In sharp contrast, here we report that severely oxidized metallic glass nanotubes can attain an ultrahigh recoverable elastic strain of up to ~14% at room temperature, which outperform bulk metallic glasses, metallic glass nanowires and many other superelastic metals hitherto reported. Through in situ experiments and atomistic simulations, we reveal that the physical mechanisms underpinning the observed superelasticity can be attributed to the formation of a percolating oxide network in metallic glass nanotubes, which not only restricts atomic-scale plastic events during loading but also leads to the recovery of elastic rigidity on unloading. Our discovery implies that oxidation in low-dimensional metallic glasses can result in unique properties for applications in nanodevices.

20.
Hum Genomics ; 18(1): 60, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858783

RESUMEN

BACKGROUND: Epidemiological studies have revealed a significant association between impaired kidney function and certain mental disorders, particularly bipolar disorder (BIP) and major depressive disorder (MDD). However, the evidence regarding shared genetics and causality is limited due to residual confounding and reverse causation. METHODS: In this study, we conducted a large-scale genome-wide cross-trait association study to investigate the genetic overlap between 5 kidney function biomarkers (eGFRcrea, eGFRcys, blood urea nitrogen (BUN), serum urate, and UACR) and 2 mental disorders (MDD, BIP). Summary-level data of European ancestry were extracted from UK Biobank, Chronic Kidney Disease Genetics Consortium, and Psychiatric Genomics Consortium. RESULTS: Using LD score regression, we found moderate but significant genetic correlations between kidney function biomarker traits on BIP and MDD. Cross-trait meta-analysis identified 1 to 19 independent significant loci that were found shared among 10 pairs of 5 kidney function biomarkers traits and 2 mental disorders. Among them, 3 novel genes: SUFU, IBSP, and PTPRJ, were also identified in transcriptome-wide association study analysis (TWAS), most of which were observed in the nervous and digestive systems (FDR < 0.05). Pathway analysis showed the immune system could play a role between kidney function biomarkers and mental disorders. Bidirectional mendelian randomization analysis suggested a potential causal relationship of kidney function biomarkers on BIP and MDD. CONCLUSIONS: In conclusion, the study demonstrated that both BIP and MDD shared genetic architecture with kidney function biomarkers, providing new insights into their genetic architectures and suggesting that larger GWASs are warranted.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Estudio de Asociación del Genoma Completo , Humanos , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/patología , Trastorno Bipolar/genética , Trastorno Bipolar/patología , Polimorfismo de Nucleótido Simple/genética , Riñón/fisiopatología , Riñón/patología , Predisposición Genética a la Enfermedad , Biomarcadores/sangre , Tasa de Filtración Glomerular/genética , Sitios de Carácter Cuantitativo/genética , Ácido Úrico/sangre
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda