Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 8.086
Filtrar
Más filtros

Publication year range
1.
Cell ; 187(19): 5253-5266.e16, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39173632

RESUMEN

Horizontal gene transfer is a key driver of bacterial evolution, but it also presents severe risks to bacteria by introducing invasive mobile genetic elements. To counter these threats, bacteria have developed various defense systems, including prokaryotic Argonautes (pAgos) and the DNA defense module DdmDE system. Through biochemical analysis, structural determination, and in vivo plasmid clearance assays, we elucidate the assembly and activation mechanisms of DdmDE, which eliminates small, multicopy plasmids. We demonstrate that DdmE, a pAgo-like protein, acts as a catalytically inactive, DNA-guided, DNA-targeting defense module. In the presence of guide DNA, DdmE targets plasmids and recruits a dimeric DdmD, which contains nuclease and helicase domains. Upon binding to DNA substrates, DdmD transitions from an autoinhibited dimer to an active monomer, which then translocates along and cleaves the plasmids. Together, our findings reveal the intricate mechanisms underlying DdmDE-mediated plasmid clearance, offering fundamental insights into bacterial defense systems against plasmid invasions.


Asunto(s)
Proteínas Bacterianas , Transferencia de Gen Horizontal , Plásmidos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , ADN/metabolismo , ADN Helicasas/metabolismo , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Plásmidos/metabolismo , Plásmidos/genética
2.
Cell ; 182(5): 1271-1283.e16, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32795413

RESUMEN

There is an urgent need for vaccines against coronavirus disease 2019 (COVID-19) because of the ongoing SARS-CoV-2 pandemic. Among all approaches, a messenger RNA (mRNA)-based vaccine has emerged as a rapid and versatile platform to quickly respond to this challenge. Here, we developed a lipid nanoparticle-encapsulated mRNA (mRNA-LNP) encoding the receptor binding domain (RBD) of SARS-CoV-2 as a vaccine candidate (called ARCoV). Intramuscular immunization of ARCoV mRNA-LNP elicited robust neutralizing antibodies against SARS-CoV-2 as well as a Th1-biased cellular response in mice and non-human primates. Two doses of ARCoV immunization in mice conferred complete protection against the challenge of a SARS-CoV-2 mouse-adapted strain. Additionally, ARCoV is manufactured as a liquid formulation and can be stored at room temperature for at least 1 week. ARCoV is currently being evaluated in phase 1 clinical trials.


Asunto(s)
ARN Mensajero/genética , ARN Viral/genética , Vacunas Sintéticas/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Sitios de Unión , Vacunas contra la COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Femenino , Células HEK293 , Células HeLa , Humanos , Inmunogenicidad Vacunal , Inyecciones Intramusculares , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos ICR , Nanopartículas/química , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células TH1/inmunología , Potencia de la Vacuna , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Células Vero , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
3.
Mol Cell ; 83(24): 4586-4599.e5, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38096827

RESUMEN

SIR2-HerA, a bacterial two-protein anti-phage defense system, induces bacterial death by depleting NAD+ upon phage infection. Biochemical reconstitution of SIR2, HerA, and the SIR2-HerA complex reveals a dynamic assembly process. Unlike other ATPases, HerA can form various oligomers, ranging from dimers to nonamers. When assembled with SIR2, HerA forms a hexamer and converts SIR2 from a nuclease to an NAD+ hydrolase, representing an unexpected regulatory mechanism mediated by protein assembly. Furthermore, high concentrations of ATP can inhibit NAD+ hydrolysis by the SIR2-HerA complex. Cryo-EM structures of the SIR2-HerA complex reveal a giant supramolecular assembly up to 1 MDa, with SIR2 as a dodecamer and HerA as a hexamer, crucial for anti-phage defense. Unexpectedly, the HerA hexamer resembles a spiral staircase and exhibits helicase activities toward dual-forked DNA. Together, we reveal the supramolecular assembly of SIR2-HerA as a unique mechanism for switching enzymatic activities and bolstering anti-phage defense strategies.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Sirtuinas , Fagos T , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , NAD , Sirtuinas/metabolismo , Escherichia coli/enzimología , Escherichia coli/virología , Proteínas de Escherichia coli/metabolismo
4.
Nature ; 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39478224

RESUMEN

Although coronaviruses use diverse receptors, the characterization of coronaviruses with unknown receptors has been impeded by a lack of infection models1,2. Here we introduce a strategy to engineer functional customized viral receptors (CVRs). The modular design relies on building artificial receptor scaffolds comprising various modules and generating specific virus-binding domains. We identify key factors for CVRs to functionally mimic native receptors by facilitating spike proteolytic cleavage, membrane fusion, pseudovirus entry and propagation for various coronaviruses. We delineate functional SARS-CoV-2 spike receptor-binding sites for CVR design and reveal the mechanism of cell entry promoted by the N-terminal domain-targeting S2L20-CVR. We generated CVR-expressing cells for 12 representative coronaviruses from 6 subgenera, most of which lack known receptors, and show that a pan-sarbecovirus CVR supports propagation of a propagation-competent HKU3 pseudovirus and of authentic RsHuB2019A3. Using an HKU5-specific CVR, we successfully rescued wild-type and ZsGreen-HiBiT-incorporated HKU5-1 (LMH03f) and isolated a HKU5 strain from bat samples. Our study demonstrates the potential of the CVR strategy for establishing native receptor-independent infection models, providing a tool for studying viruses that lack known susceptible target cells.

5.
Nature ; 632(8025): 528-535, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048826

RESUMEN

Conjugated polymers promise inherently flexible and low-cost thermoelectrics for powering the Internet of Things from waste heat1,2. Their valuable applications, however, have been hitherto hindered by the low dimensionless figure of merit (ZT)3-6. Here we report high-ZT thermoelectric plastics, which were achieved by creating a polymeric multi-heterojunction with periodic dual-heterojunction features, where each period is composed of two polymers with a sub-ten-nanometre layered heterojunction structure and an interpenetrating bulk-heterojunction interface. This geometry produces significantly enhanced interfacial phonon-like scattering while maintaining efficient charge transport. We observed a significant suppression of thermal conductivity by over 60 per cent and an enhanced power factor when compared with individual polymers, resulting in a ZT of up to 1.28 at 368 kelvin. This polymeric thermoelectric performance surpasses that of commercial thermoelectric materials and existing flexible thermoelectric candidates. Importantly, we demonstrated the compatibility of the polymeric multi-heterojunction structure with solution coating techniques for satisfying the demand for large-area plastic thermoelectrics, which paves the way for polymeric multi-heterojunctions towards cost-effective wearable thermoelectric technologies.

6.
Mol Cell ; 82(21): 4018-4032.e9, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36332605

RESUMEN

Kinetochore assembly on centromeres is central for chromosome segregation, and defects in this process cause mitotic errors and aneuploidy. Besides the well-established protein network, emerging evidence suggests the involvement of regulatory RNA in kinetochore assembly; however, it has remained elusive about the identity of such RNA, let alone its mechanism of action in this critical process. Here, we report CCTT, a previously uncharacterized long non-coding RNA (lncRNA) transcribed from the arm of human chromosome 17, which plays a vital role in kinetochore assembly. We show that CCTT highly localizes to all centromeres via the formation of RNA-DNA triplex and specifically interacts with CENP-C to help engage this blueprint protein in centromeres, and consequently, CCTT loss triggers extensive mitotic errors and aneuploidy. These findings uncover a non-centromere-derived lncRNA that recruits CENP-C to centromeres and shed critical lights on the function of centromeric DNA sequences as anchor points for kinetochore assembly.


Asunto(s)
ARN Largo no Codificante , Humanos , Aneuploidia , Proteína A Centromérica/metabolismo , ADN , Cinetocoros/metabolismo , ARN Largo no Codificante/genética , Centrómero
7.
Nature ; 621(7977): 154-161, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37494956

RESUMEN

Although eukaryotic and long prokaryotic Argonaute proteins (pAgos) cleave nucleic acids, some short pAgos lack nuclease activity and hydrolyse NAD(P)+ to induce bacterial cell death1. Here we present a hierarchical activation pathway for SPARTA, a short pAgo consisting of an Argonaute (Ago) protein and TIR-APAZ, an associated protein2. SPARTA progresses through distinct oligomeric forms, including a monomeric apo state, a monomeric RNA-DNA-bound state, two dimeric RNA-DNA-bound states and a tetrameric RNA-DNA-bound active state. These snapshots together identify oligomerization as a mechanistic principle of SPARTA activation. The RNA-DNA-binding channel of apo inactive SPARTA is occupied by an auto-inhibitory motif in TIR-APAZ. After the binding of RNA-DNA, SPARTA transitions from a monomer to a symmetric dimer and then an asymmetric dimer, in which two TIR domains interact through charge and shape complementarity. Next, two dimers assemble into a tetramer with a central TIR cluster responsible for hydrolysing NAD(P)+. In addition, we observe unique features of interactions between SPARTA and RNA-DNA, including competition between the DNA 3' end and the auto-inhibitory motif, interactions between the RNA G2 nucleotide and Ago, and splaying of the RNA-DNA duplex by two loops exclusive to short pAgos. Together, our findings provide a mechanistic basis for the activation of short pAgos, a large section of the Ago superfamily.


Asunto(s)
Proteínas Argonautas , Células Procariotas , Apoproteínas/química , Apoproteínas/metabolismo , Proteínas Argonautas/química , Proteínas Argonautas/clasificación , Proteínas Argonautas/metabolismo , ADN/metabolismo , Activación Enzimática , NAD/metabolismo , Células Procariotas/metabolismo , ARN/metabolismo
8.
Nature ; 614(7949): 694-700, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36755091

RESUMEN

The ideal electrolyte for the widely used LiNi0.8Mn0.1Co0.1O2 (NMC811)||graphite lithium-ion batteries is expected to have the capability of supporting higher voltages (≥4.5 volts), fast charging (≤15 minutes), charging/discharging over a wide temperature range (±60 degrees Celsius) without lithium plating, and non-flammability1-4. No existing electrolyte simultaneously meets all these requirements and electrolyte design is hindered by the absence of an effective guiding principle that addresses the relationships between battery performance, solvation structure and solid-electrolyte-interphase chemistry5. Here we report and validate an electrolyte design strategy based on a group of soft solvents that strikes a balance between weak Li+-solvent interactions, sufficient salt dissociation and desired electrochemistry to fulfil all the aforementioned requirements. Remarkably, the 4.5-volt NMC811||graphite coin cells with areal capacities of more than 2.5 milliampere hours per square centimetre retain 75 per cent (54 per cent) of their room-temperature capacity when these cells are charged and discharged at -50 degrees Celsius (-60 degrees Celsius) at a C rate of 0.1C, and the NMC811||graphite pouch cells with lean electrolyte (2.5 grams per ampere hour) achieve stable cycling with an average Coulombic efficiency of more than 99.9 per cent at -30 degrees Celsius. The comprehensive analysis further reveals an impedance matching between the NMC811 cathode and the graphite anode owing to the formation of similar lithium-fluoride-rich interphases, thus effectively avoiding lithium plating at low temperatures. This electrolyte design principle can be extended to other alkali-metal-ion batteries operating under extreme conditions.

9.
Nature ; 611(7936): 485-490, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36224388

RESUMEN

Lithium-ion batteries with nickel-rich layered oxide cathodes and graphite anodes have reached specific energies of 250-300 Wh kg-1 (refs. 1,2), and it is now possible to build a 90 kWh electric vehicle (EV) pack with a 300-mile cruise range. Unfortunately, using such massive batteries to alleviate range anxiety is ineffective for mainstream EV adoption owing to the limited raw resource supply and prohibitively high cost. Ten-minute fast charging enables downsizing of EV batteries for both affordability and sustainability, without causing range anxiety. However, fast charging of energy-dense batteries (more than 250 Wh kg-1 or higher than 4 mAh cm-2) remains a great challenge3,4. Here we combine a material-agnostic approach based on asymmetric temperature modulation with a thermally stable dual-salt electrolyte to achieve charging of a 265 Wh kg-1 battery to 75% (or 70%) state of charge in 12 (or 11) minutes for more than 900 (or 2,000) cycles. This is equivalent to a half million mile range in which every charge is a fast charge. Further, we build a digital twin of such a battery pack to assess its cooling and safety and demonstrate that thermally modulated 4C charging only requires air convection. This offers a compact and intrinsically safe route to cell-to-pack development. The rapid thermal modulation method to yield highly active electrochemical interfaces only during fast charging has important potential to realize both stability and fast charging of next-generation materials, including anodes like silicon and lithium metal.

10.
Nature ; 610(7931): 319-326, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36224417

RESUMEN

Self-organizing neural organoids represent a promising in vitro platform with which to model human development and disease1-5. However, organoids lack the connectivity that exists in vivo, which limits maturation and makes integration with other circuits that control behaviour impossible. Here we show that human stem cell-derived cortical organoids transplanted into the somatosensory cortex of newborn athymic rats develop mature cell types that integrate into sensory and motivation-related circuits. MRI reveals post-transplantation organoid growth across multiple stem cell lines and animals, whereas single-nucleus profiling shows progression of corticogenesis and the emergence of activity-dependent transcriptional programs. Indeed, transplanted cortical neurons display more complex morphological, synaptic and intrinsic membrane properties than their in vitro counterparts, which enables the discovery of defects in neurons derived from individuals with Timothy syndrome. Anatomical and functional tracings show that transplanted organoids receive thalamocortical and corticocortical inputs, and in vivo recordings of neural activity demonstrate that these inputs can produce sensory responses in human cells. Finally, cortical organoids extend axons throughout the rat brain and their optogenetic activation can drive reward-seeking behaviour. Thus, transplanted human cortical neurons mature and engage host circuits that control behaviour. We anticipate that this approach will be useful for detecting circuit-level phenotypes in patient-derived cells that cannot otherwise be uncovered.


Asunto(s)
Vías Nerviosas , Organoides , Animales , Animales Recién Nacidos , Trastorno Autístico , Humanos , Síndrome de QT Prolongado , Motivación , Neuronas/fisiología , Optogenética , Organoides/citología , Organoides/inervación , Organoides/trasplante , Ratas , Recompensa , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Células Madre/citología , Sindactilia
11.
Proc Natl Acad Sci U S A ; 121(42): e2406936121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39388269

RESUMEN

Kirsten rat sarcoma virus (KRAS) mutation is associated with malignant tumor transformation and drug resistance. However, the development of clinically effective targeted therapies for KRAS-mutant cancer has proven to be a formidable challenge. Here, we report that tripartite motif-containing protein 21 (TRIM21) functions as a target of extracellular signal-regulated kinase 2 (ERK2) in KRAS-mutant colorectal cancer (CRC), contributing to regorafenib therapy resistance. Mechanistically, TRIM21 directly interacts with and ubiquitinates v-myc avian myelocytomatosis viral oncogene homolog (c-Myc) at lysine 148 (K148) via K63-linkage, enabling c-Myc to be targeted to the autophagy machinery for degradation, ultimately resulting in the downregulation of enolase 2 expression and inhibition of glycolysis. However, mutant KRAS (KRAS/MT)-driven mitogen-activated protein kinase (MAPK) signaling leads to the phosphorylation of TRIM21 (p-TRIM21) at Threonine 396 (T396) by ERK2, disrupting the interaction between TRIM21 and c-Myc and thereby preventing c-Myc from targeting autophagy for degradation. This enhances glycolysis and contributes to regorafenib resistance. Clinically, high p-TRIM21 (T396) is associated with an unfavorable prognosis. Targeting TRIM21 to disrupt KRAS/MT-driven phosphorylation using the antidepressant vilazodone shows potential for enhancing the efficacy of regorafenib in treating KRAS-mutant CRC in preclinical models. These findings are instrumental for KRAS-mutant CRC treatment aiming at activating TRIM21-mediated selective autophagic degradation of c-Myc.


Asunto(s)
Autofagia , Neoplasias Colorrectales , Compuestos de Fenilurea , Proteínas Proto-Oncogénicas c-myc , Proteínas Proto-Oncogénicas p21(ras) , Piridinas , Ribonucleoproteínas , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Humanos , Autofagia/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Animales , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Piridinas/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Ratones , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos , Ensayos Antitumor por Modelo de Xenoinjerto , Proteolisis/efectos de los fármacos , Mutación , Ratones Desnudos
12.
Nature ; 577(7788): 69-73, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31894147

RESUMEN

More than one-third of Earth's landmass is drained by rivers that seasonally freeze over. Ice transforms the hydrologic1,2, ecologic3,4, climatic5 and socio-economic6-8 functions of river corridors. Although river ice extent has been shown to be declining in many regions of the world1, the seasonality, historical change and predicted future changes in river ice extent and duration have not yet been quantified globally. Previous studies of river ice, which suggested that declines in extent and duration could be attributed to warming temperatures9,10, were based on data from sparse locations. Furthermore, existing projections of future ice extent are based solely on the location of the 0-°C isotherm11. Here, using satellite observations, we show that the global extent of river ice is declining, and we project a mean decrease in seasonal ice duration of 6.10 ± 0.08 days per 1-°C increase in global mean surface air temperature. We tracked the extent of river ice using over 400,000 clear-sky Landsat images spanning 1984-2018 and observed a mean decline of 2.5 percentage points globally in the past three decades. To project future changes in river ice extent, we developed an observationally calibrated and validated model, based on temperature and season, which reduced the mean bias by 87 per cent compared with the 0-degree-Celsius isotherm approach. We applied this model to future climate projections for 2080-2100: compared with 2009-2029, the average river ice duration declines by 16.7 days under Representative Concentration Pathway (RCP) 8.5, whereas under RCP 4.5 it declines on average by 7.3 days. Our results show that, globally, river ice is measurably declining and will continue to decline linearly with projected increases in surface air temperature towards the end of this century.


Asunto(s)
Hielo , Modelos Teóricos , Ríos/química , Predicción , Fenómenos Geológicos , Imágenes Satelitales
13.
Nucleic Acids Res ; 52(9): 4969-4984, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38452206

RESUMEN

Proteasome-mediated degradation of chromatin-bound NF-κB is critical in terminating the transcription of pro-inflammatory genes and can be triggered by Set9-mediated lysine methylation of the RelA subunit. However, the E3 ligase targeting methylated RelA remains unknown. Here, we find that two structurally similar substrate-recognizing components of Cullin-RING E3 ligases, WSB1 and WSB2, can recognize chromatin-bound methylated RelA for polyubiquitination and proteasomal degradation. We showed that WSB1/2 negatively regulated a subset of NF-κB target genes via associating with chromatin where they targeted methylated RelA for ubiquitination, facilitating the termination of NF-κB-dependent transcription. WSB1/2 specifically interacted with methylated lysines (K) 314 and 315 of RelA via their N-terminal WD-40 repeat (WDR) domains, thereby promoting ubiquitination of RelA. Computational modeling further revealed that a conserved aspartic acid (D) at position 158 within the WDR domain of WSB2 coordinates K314/K315 of RelA, with a higher affinity when either of the lysines is methylated. Mutation of D158 abolished WSB2's ability to bind to and promote ubiquitination of methylated RelA. Together, our study identifies a novel function and the underlying mechanism for WSB1/2 in degrading chromatin-bound methylated RelA and preventing sustained NF-κB activation, providing potential new targets for therapeutic intervention of NF-κB-mediated inflammatory diseases.


Asunto(s)
Cromatina , Complejo de la Endopetidasa Proteasomal , Factor de Transcripción ReIA , Ubiquitinación , Humanos , Cromatina/metabolismo , Células HEK293 , Lisina/metabolismo , Metilación , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteolisis , Factor de Transcripción ReIA/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
14.
Proc Natl Acad Sci U S A ; 120(6): e2221637120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36716376

RESUMEN

Lipids establish the specialized thylakoid membrane of chloroplast in eukaryotic photosynthetic organisms, while the molecular basis of lipid transfer from other organelles to chloroplast remains further elucidation. Here we revealed the structural basis of Arabidopsis Sec14 homology proteins AtSFH5 and AtSFH7 in transferring phosphatidic acid (PA) from endoplasmic reticulum (ER) to chloroplast, and whose function in regulating the lipid composition of chloroplast and thylakoid development. AtSFH5 and AtSFH7 localize at both ER and chloroplast, whose deficiency resulted in an abnormal chloroplast structure and a decreased thickness of stacked thylakoid membranes. We demonstrated that AtSFH5, but not yeast and human Sec14 proteins, could specifically recognize and transfer PA in vitro. Crystal structures of the AtSFH5-Sec14 domain in complex with L-α-phosphatidic acid (L-α-PA) and 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA) revealed that two PA ligands nestled in the central cavity with different configurations, elucidating the specific binding mode of PA to AtSFH5, different from the reported phosphatidylethanolamine (PE)/phosphatidylcholine (PC)/phosphatidylinositol (PI) binding modes. Quantitative lipidomic analysis of chloroplast lipids showed that PA and monogalactosyldiacylglycerol (MGDG), particularly the C18 fatty acids at sn-2 position in MGDG were significantly decreased, indicating a disrupted ER-to-plastid (chloroplast) lipid transfer, under deficiency of AtSFH5 and AtSFH7. Our studies identified the role and elucidated the structural basis of plant SFH proteins in transferring PA between organelles, and suggested a model for ER-chloroplast interorganelle phospholipid transport from inherent ER to chloroplast derived from endosymbiosis of a cyanobacteriumproviding a mechanism involved in the adaptive evolution of cellular plastids.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Ácidos Fosfatidicos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Ácidos Fosfatidicos/metabolismo , Tilacoides/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(19): e2219994120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126689

RESUMEN

Glutamate (Glu) is the major excitatory transmitter in the nervous system. Impairment of its vesicular release by ß-amyloid (Aß) oligomers is thought to participate in pathological processes leading to Alzheimer's disease. However, it remains unclear whether soluble Aß42 oligomers affect intravesicular amounts of Glu or their release in the brain, or both. Measurements made in this work on single Glu varicosities with an amperometric nanowire Glu biosensor revealed that soluble Aß42 oligomers first caused a dramatic increase in vesicular Glu storage and stimulation-induced release, accompanied by a high level of parallel spontaneous exocytosis, ultimately resulting in the depletion of intravesicular Glu content and greatly reduced release. Molecular biology tools and mouse models of Aß amyloidosis have further established that the transient hyperexcitation observed during the primary pathological stage is mediated by an altered behavior of VGLUT1 responsible for transporting Glu into synaptic vesicles. Thereafter, an overexpression of Vps10p-tail-interactor-1a, a protein that maintains spontaneous release of neurotransmitters by selective interaction with t-SNAREs, resulted in a depletion of intravesicular Glu content, triggering advanced-stage neuronal malfunction. These findings are expected to open perspectives for remediating Aß42-induced neuronal hyperactivity and neuronal degeneration.


Asunto(s)
Enfermedad de Alzheimer , Ácido Glutámico , Ratones , Animales , Ácido Glutámico/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Fragmentos de Péptidos/metabolismo
16.
Circulation ; 150(8): 611-621, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38666382

RESUMEN

BACKGROUND: The clinical application of human induced pluripotent stem cell-derived cardiomyocytes (CMs) for cardiac repair commenced with the epicardial delivery of engineered cardiac tissue; however, the feasibility of the direct delivery of human induced pluripotent stem cell-derived CMs into the cardiac muscle layer, which has reportedly induced electrical integration, is unclear because of concerns about poor engraftment of CMs and posttransplant arrhythmias. Thus, in this study, we prepared purified human induced pluripotent stem cell-derived cardiac spheroids (hiPSC-CSs) and investigated whether their direct injection could regenerate infarcted nonhuman primate hearts. METHODS: We performed 2 separate experiments to explore the appropriate number of human induced pluripotent stem cell-derived CMs. In the first experiment, 10 cynomolgus monkeys were subjected to myocardial infarction 2 weeks before transplantation and were designated as recipients of hiPSC-CSs containing 2×107 CMs or the vehicle. The animals were euthanized 12 weeks after transplantation for histological analysis, and cardiac function and arrhythmia were monitored during the observational period. In the second study, we repeated the equivalent transplantation study using more CMs (6×107 CMs). RESULTS: Recipients of hiPSC-CSs containing 2×107 CMs showed limited CM grafts and transient increases in fractional shortening compared with those of the vehicle (fractional shortening at 4 weeks after transplantation [mean ± SD]: 26.2±2.1%; 19.3±1.8%; P<0.05), with a low incidence of posttransplant arrhythmia. Transplantation of increased dose of CMs resulted in significantly greater engraftment and long-term contractile benefits (fractional shortening at 12 weeks after transplantation: 22.5±1.0%; 16.6±1.1%; P<0.01, left ventricular ejection fraction at 12 weeks after transplantation: 49.0±1.4%; 36.3±2.9%; P<0.01). The incidence of posttransplant arrhythmia slightly increased in recipients of hiPSC-CSs containing 6×107 CMs. CONCLUSIONS: We demonstrated that direct injection of hiPSC-CSs restores the contractile functions of injured primate hearts with an acceptable risk of posttransplant arrhythmia. Although the mechanism for the functional benefits is not fully elucidated, these findings provide a strong rationale for conducting clinical trials using the equivalent CM products.


Asunto(s)
Células Madre Pluripotentes Inducidas , Macaca fascicularis , Infarto del Miocardio , Miocitos Cardíacos , Esferoides Celulares , Animales , Células Madre Pluripotentes Inducidas/trasplante , Células Madre Pluripotentes Inducidas/citología , Humanos , Miocitos Cardíacos/trasplante , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Esferoides Celulares/trasplante , Regeneración , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/etiología , Arritmias Cardíacas/patología , Masculino , Trasplante de Células Madre/métodos , Modelos Animales de Enfermedad
17.
RNA ; 29(11): 1673-1690, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37562960

RESUMEN

U7 snRNP is a multisubunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B, and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50, and pICln known to methylate arginines in the carboxy-terminal regions of the Sm proteins B, D1, and D3 during the spliceosomal Sm ring assembly. Both biochemical and cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the amino-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an amino-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U7 , Ribonucleoproteínas Nucleares Pequeñas , Animales , Ribonucleoproteína Nuclear Pequeña U7/química , Metilación , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Histonas/metabolismo , Arginina/química
18.
Plant Physiol ; 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39405162

RESUMEN

Cultivated strawberry (Fragaria × ananassa) is a popular, economically important fruit. The ripening of the receptacle (pseudocarp), the main edible part, depends on endogenously produced abscisic acid (ABA) and is suppressed by the high level of auxin produced from achenes (true fruit) during early development. However, the mechanism whereby auxin regulates receptacle ripening through inhibiting ABA biosynthesis remains unclear. Here, we identified AUXIN RESPONSE FACTOR 2 (FaARF2), which showed decreased expression with reduced auxin content in the receptacle, leading to increased ABA levels and accelerated ripening. Dual-luciferase, yeast one-hybrid, and electrophoretic mobility shift assays demonstrated that FaARF2 could bind to the AuxRE element in the promoter of 9-CIS-EPOXYCAROT-ENOID DIOXYGENASE 1 (FaNCED1), a key ABA biosynthetic gene, to suppress its transcriptional activity. Transiently overexpressing FaARF2 in the receptacles decreased FaNCED1 expression and ABA levels, resulting in inhibition of receptacle ripening and of development of quality attributes, such as pigmentation, aroma, and sweetness. This inhibition caused by overexpressing FaARF2 was partially recovered by the injection of exogenous ABA; conversely, transient silencing of FaARF2 using RNA interference produced the opposite results. The negative targeting of FaNCED1 by FaARF2 is a key link between auxin-ABA interactions and regulation of strawberry ripening.

19.
FASEB J ; 38(4): e23473, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38334462

RESUMEN

Aging has a great impact on the liver, which causes a loss of physiological integrity and an increase in susceptibility to injury, but many of the underlying molecular and cellular processes remain unclear. Here, we performed a comprehensive single-cell transcriptional profiling of the liver during aging. Our data showed that aging affected the cellular composition of the liver. The increase in inflammatory cells including neutrophils and monocyte-derived macrophages, as well as in inflammatory cytokines, could indicate an inflammatory tissue microenvironment in aged livers. Moreover, aging drove a distinct transcriptional course in each cell type. The commonly significant up-regulated genes were S100a8, S100a9, and RNA-binding motif protein 3 across all cell types. Aging-related pathways such as biosynthesis, metabolism, and oxidative stress were up-regulated in aged livers. Additionally, key ligand-receptor pairs for intercellular communication, primarily linked to macrophage migration inhibitory factor, transforming growth factor-ß, and complement signaling, were also elevated. Furthermore, hepatic stellate cells (HSCs) serve as the prominent hub for intrahepatic signaling. HSCs acquired an "activated" phenotype, which may be involved in the increased intrahepatic vascular tone and fibrosis with aging. Liver sinusoidal endothelial cells derived from aged livers were pseudocapillarized and procontractile, and exhibited down-regulation of genes involved in vascular development and homeostasis. Moreover, the aging-related changes in cellular composition and gene expression were reversed by caloric restriction. Collectively, the present study suggests liver aging is linked to a significant liver sinusoidal deregulation and a moderate pro-inflammatory state, providing a potential concept for understanding the mechanism of liver aging.


Asunto(s)
Células Endoteliales , Análisis de Expresión Génica de una Sola Célula , Ratones , Animales , Hígado , Envejecimiento/genética , Envejecimiento/metabolismo , Transducción de Señal/fisiología , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/metabolismo
20.
Mol Psychiatry ; 29(3): 838-846, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38233469

RESUMEN

Previous studies have shown that excessive alcohol consumption is associated with poor sleep. However, the health risks of light-to-moderate alcohol consumption in relation to sleep traits (e.g., insomnia, snoring, sleep duration and chronotype) remain undefined, and their causality is still unclear in the general population. To identify the association between alcohol consumption and multiple sleep traits using an observational and Mendelian randomization (MR) design. Observational analyses and one-sample MR (linear and nonlinear) were performed using clinical and individual-level genetic data from the UK Biobank (UKB). Two-sample MR was assessed using summary data from genome-wide association studies from the UKB and other external consortia. Phenotype analyses were externally validated using data from the National Health and Nutrition Examination Survey (2017-2018). Data analysis was conducted from January 2022 to October 2022. The association between alcohol consumption and six self-reported sleep traits (short sleep duration, long sleep duration, chronotype, snoring, waking up in the morning, and insomnia) were analysed. This study included 383,357 UKB participants (mean [SD] age, 57.0 [8.0] years; 46% male) who consumed a mean (SD) of 9.0 (10.0) standard drinks (one standard drink equivalent to 14 g of alcohol) per week. In the observational analyses, alcohol consumption was significantly associated with all sleep traits. Light-moderate-heavy alcohol consumption was linearly linked to snoring and the evening chronotype but nonlinearly associated with insomnia, sleep duration, and napping. In linear MR analyses, a 1-SD (14 g) increase in genetically predicted alcohol consumption was associated with a 1.14-fold (95% CI, 1.07-1.22) higher risk of snoring (P < 0.001), a 1.28-fold (95% CI, 1.20-1.37) higher risk of evening chronotype (P < 0.001) and a 1.24-fold (95% CI, 1.13-1.36) higher risk of difficulty waking up in the morning (P < 0.001). Nonlinear MR analyses did not reveal significant results after Bonferroni adjustment. The results of the two-sample MR analyses were consistent with those of the one-sample MR analyses, but with a slightly attenuated overall estimate. Our findings suggest that even low levels of alcohol consumption may affect sleep health, particularly by increasing the risk of snoring and evening chronotypes. The negative effects of alcohol consumption on sleep should be made clear to the public in order to promote public health.


Asunto(s)
Consumo de Bebidas Alcohólicas , Bancos de Muestras Biológicas , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Trastornos del Inicio y del Mantenimiento del Sueño , Sueño , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/epidemiología , Masculino , Reino Unido/epidemiología , Femenino , Persona de Mediana Edad , Sueño/genética , Sueño/fisiología , Anciano , Trastornos del Inicio y del Mantenimiento del Sueño/genética , Trastornos del Inicio y del Mantenimiento del Sueño/epidemiología , Ronquido/genética , Ronquido/epidemiología , Adulto , Fenotipo , Trastornos del Sueño-Vigilia/genética , Trastornos del Sueño-Vigilia/epidemiología , Polimorfismo de Nucleótido Simple/genética , Biobanco del Reino Unido
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda