Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 23(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37050504

RESUMEN

A resonant acoustic wave detector combined with Fabry-Pérot interference (FPI) and piezoelectric (PE) effects based on a polyvinylidene fluoride (PVDF) piezoelectric film was proposed to enhance the ability of the sensor to detect acoustic signals in a specific frequency band. The deformation of circular thin films was indicated by the interference and piezoelectric effects simultaneously, and the noise level was decreased by the real-time convolution of the two-way parallel signal. This study reveals that, at the film's resonance frequency, the minimum detection limits for the FPI and piezoelectric impacts on acoustic waves are 3.39 µPa/Hz1/2 and 20.8 µPa/Hz1/2, respectively. The convolution result shows that the background noise was reduced by 98.81% concerning the piezoelectric signal, and by 85.21% concerning the FPI signal. The convolution's signal-to-noise ratio (SNR) was several times greater than the other two signals at 10 mPa. Therefore, this resonance sensor, which the FPI and the piezoelectric effect synergistically enhance, can be applied to scenarios of acoustic wave detection in a specific frequency band and with ultrahigh sensitivity requirements.

2.
Materials (Basel) ; 14(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34947199

RESUMEN

In this paper, a Fabry-Pérot interference fiber sensor was fabricated by using a Polyvinyl chloride membrane (20 µm in thickness) attached at the end of a ferrule with an inner diameter of 1.1 mm. In consideration of the vibration response of the membrane, the feature of the first-order natural frequency of membrane was analyzed by COMSOL Multiphysics. The acoustic sensing performance of the Fabry-Pérot fiber interference sensor was studied in air. The results reveal that the sensor possessed good acoustic pressure sensitivity, in the order of 33.26 mV/Pa. In addition, the noise-limited minimum detectable pressure level was determined to be 58.9 µPa/Hz1/2 and the pressure-induced deflection obtained was 105 nm/Pa at the frequency of 1 kHz. The response of the sensor was approximately consistent with the reference sensor from 1 to 7 kHz. All these results support that the fabricated Fabry-Pérot fiber interference sensor may be applied for ultra-sensitive pressure sensing applications.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda