Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Transl Med ; 22(1): 672, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033271

RESUMEN

BACKGROUND: T cells play a pivotal role in chemotherapy-triggered anti-tumor effects. Emerging evidence underscores the link between impaired anti-tumor immune responses and resistance to paclitaxel therapy in triple-negative breast cancer (TNBC). Tumor-related endothelial cells (ECs) have potential immunoregulatory activity. However, how ECs regulate T cell activity during TNBC chemotherapy remains poorly understood. METHODS: Single-cell analysis of ECs in patients with TNBC receiving paclitaxel therapy was performed using an accessible single-cell RNA sequencing (scRNA-seq) dataset to identify key EC subtypes and their immune characteristics. An integrated analysis of a tumor-bearing mouse model, immunofluorescence, and a spatial transcriptome dataset revealed the spatial relationship between ECs, especially Tumor necrosis factor receptor (TNFR) 2+ ECs, and CD8+ T cells. RNA sequencing, CD8+ T cell proliferation assays, flow cytometry, and bioinformatic analyses were performed to explore the immunosuppressive function of TNFR2 in ECs. The downstream metabolic mechanism of TNFR2 was further investigated using RNA sequencing, cellular glycolysis assays, and western blotting. RESULTS: In this study, we identified an immunoregulatory EC subtype, characterized by enhanced TNFR2 expression in non-responders. By a mouse model of TNBC, we revealed a dynamic reduction in the proportion of the CD8+ T cell-contacting tumor vessels that could co-localize spatially with CD8+ T cells during chemotherapy and an increased expression of TNFR2 by ECs. TNFR2 suppresses glycolytic activity in ECs by activating NF-κB signaling in vitro. Tuning endothelial glycolysis enhances programmed death-ligand (PD-L) 1-dependent inhibitory capacity, thereby inducing CD8+ T cell suppression. In addition, TNFR2+ ECs showed a greater spatial affinity for exhausted CD8+ T cells than for non-exhausted CD8+ T cells. TNFR2 blockade restores impaired anti-tumor immunity in vivo, leading to the loss of PD-L1 expression by ECs and enhancement of CD8+ T cell infiltration into the tumors. CONCLUSIONS: These findings reveal the suppression of CD8+ T cells by ECs in chemoresistance and indicate the critical role of TNFR2 in driving the immunosuppressive capacity of ECs via tuning glycolysis. Targeting endothelial TNFR2 may serve as a potent strategy for treating TNBC with paclitaxel.


Asunto(s)
Linfocitos T CD8-positivos , Resistencia a Antineoplásicos , Células Endoteliales , Glucólisis , Receptores Tipo II del Factor de Necrosis Tumoral , Neoplasias de la Mama Triple Negativas , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Glucólisis/efectos de los fármacos , Animales , Humanos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Femenino , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Ratones , Transducción de Señal/efectos de los fármacos
2.
Biochem Biophys Res Commun ; 668: 8-18, 2023 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-37230046

RESUMEN

PURPOSE: MicroRNAs (miRNAs) are dominant cargo in exosomes and act as master regulators of cell function, inhibiting mRNA translation and affecting gene silencing. Some aspects of tissue-specific miRNA transport in bladder cancer (BC) and its role in cancer progression are not fully understood. MATERIALS AND METHODS: A microarray was used to identify miRNAs in mouse bladder carcinoma cell line MB49 exosomes. Real-time reverse transcription polymerase chain reaction was used to examine the expression of miRNAs in BC and healthy donor serum. Western blotting and immunohistochemical staining were used to examine the expression of dexamethasone-induced protein (DEXI) in patients with BC. CRISPR-Cas 9 was used to knock out Dexi in MB49, and flow cytometry was performed to test cell proliferation ability and apoptosis under chemotherapy. Human BC organoid culture, miR-3960 transfection, and 293T-exosome-loaded miR-3960 delivery were used to analyze the effect of miR-3960 on BC progression. RESULTS: The results showed that miR-3960 levels in BC tissue were positively correlated with patient survival time. Dexi was a major target of miR-3960. Dexi knockout inhibited MB49 cell proliferation and promoted cisplatin- and gemcitabine-induced apoptosis. Transfection of miR-3960 mimic inhibited DEXI expression and organoid growth. In parallel, 293T-exosome-loaded miR-3960 delivery and Dexi knockout significantly inhibited subcutaneous growth of MB49 cells in vivo. CONCLUSION: Our results demonstrate the potential role of miR-3960-mediated inhibition of DEXI as a therapeutic strategy against BC.


Asunto(s)
MicroARNs , Neoplasias de la Vejiga Urinaria , Animales , Humanos , Ratones , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular , Cisplatino/farmacología , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo
3.
Cancer Immunol Immunother ; 71(11): 2717-2730, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35428909

RESUMEN

BACKGROUND: Since the lung is one of the most common sites for cancer metastasis, it could provide a suitable microenvironment for pre-metastatic niche (PMN) formation to facilitate tumor cell colonization. Regulatory T cells (Tregs) are an immunosuppressive cell type found ubiquitously in tumors and may play a crucial role in PNM formation. In this study, we investigated tumor-derived exosome (TDE)-induced Treg differentiation in the lung PMN as well as the underlying mechanisms. METHODS: TDEs were isolated from the Lewis lung carcinoma cell line (LLC-exo) and their effects on mouse pulmonary fibroblasts was investigated in vitro as well as on lung tumor formation and metastasis in a pre-injected mouse model. Immune cell populations in the lung were analyzed by flow cytometry. Expression of CCL1 and CCR8 was evaluated by immunofluorescence staining, qRT-PCR and Western blot analyses. Cytokine expression was measured using mouse cytokine arrays and ELISA. RESULTS: The number of CD4+ FoxP3+ Tregs was significantly increased in lungs in a LLC-exo pre-injected mouse model. Lung fibroblasts secreted increased amounts of CCL1 after co-culture with LLC-exo, which induced Treg differentiation by activating its specific receptor CCR8, ultimately contributing to the establishment of an immunologically tolerant PMN. Moreover, inhibiting the release of LLC-exo by GW4869, or blocking the CCL1-CCR8 axis using AZ084, suppressed Tregs differentiation and tumor metastasis in the lung. CONCLUSIONS: Collectively, our study provides a novel mechanism by which Tregs are activated to form an immunologically tolerant PMN and demonstrates a critical link among lung fibroblasts, Tregs and metastatic tumor cells.


Asunto(s)
Exosomas , Neoplasias , Animales , Ratones , Comunicación Celular , Quimiocina CCL1/metabolismo , Citocinas/metabolismo , Exosomas/metabolismo , Fibroblastos/metabolismo , Factores de Transcripción Forkhead/metabolismo , Pulmón/metabolismo , Neoplasias/metabolismo , Receptores CCR8 , Linfocitos T Reguladores , Microambiente Tumoral
4.
Microb Cell Fact ; 20(1): 98, 2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-33985520

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder and 70-80% of PD patients suffer from gastrointestinal dysfunction such as constipation. We aimed to assess the efficacy and safety of fecal microbiota transplantation (FMT) for treating PD related to gastrointestinal dysfunction. We conducted a prospective, single- study. Eleven patients with PD received FMT. Fecal samples were collected before and after FMT and subjected to 16S ribosomal DNA (rDNA) gene sequencing. Hoehn-Yahr (H-Y) grade, Unified Parkinson's Disease Rating Scale (UPDRS) score, and the Non-Motion Symptom Questionnaire (NMSS) were used to assess improvements in motor and non-motor symptoms. PAC-QOL score and Wexner constipation score were used to assess the patient's constipation symptoms. All patients were tested by the small intestine breath hydrogen test, performed before and after FMT. Community richness (chao) and microbial structure in before-FMT PD patients were significantly different from the after-FMT. We observed an increased abundance of Blautia and Prevotella in PD patients after FMT, while the abundance of Bacteroidetes decreased dramatically. After FMT, the H-Y grade, UPDRS, and NMSS of PD patients decreased significantly. Through the lactulose H2 breath test, the intestinal bacterial overgrowth (SIBO) in PD patients returned to normal. The PAC-QOL score and Wexner constipation score in after-FMT patients decreased significantly. Our study profiles specific characteristics and microbial dysbiosis in the gut of PD patients. FMT might be a therapeutic potential for reconstructing the gut microbiota of PD patients and improving their motor and non-motor symptoms.


Asunto(s)
Bacterias/crecimiento & desarrollo , Estreñimiento/prevención & control , Trasplante de Microbiota Fecal/métodos , Trasplante de Microbiota Fecal/normas , Enfermedad de Parkinson/complicaciones , Anciano , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Disbiosis/microbiología , Disbiosis/prevención & control , Heces/microbiología , Femenino , Microbioma Gastrointestinal/genética , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Calidad de Vida
5.
J Cell Mol Med ; 24(14): 7802-7813, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32449597

RESUMEN

Tumour-derived exosomes have been shown to induce pre-metastatic niche formation, favoring metastatic colonization of tumour cells, but the underlying molecular mechanism is still not fully understood. In this study, we showed that exosomes derived from the LLC cells could indeed significantly enhance their intrapulmonary colonization. Circulating LLC-derived exosomes were mainly engulfed by lung fibroblasts and led to the NF-κB signalling activation. Further studies indicated that the exosomal miR-3473b was responsible for that by hindering the NFKB inhibitor delta's (NFKBID) function. Blocking miR-3473b could reverse the exosome-mediated NF-κB activation of fibroblasts and decrease intrapulmonary colonization of lung tumour cells. Together, this study demonstrated that the miR-3473b in exosomes could mediate the interaction of lung tumour cells and local fibroblasts in metastatic sites and, therefore, enhance the metastasis of lung tumour cells.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Exosomas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroARNs/genética , FN-kappa B/metabolismo , Animales , Transporte Biológico , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Citocinas/metabolismo , Modelos Animales de Enfermedad , Exosomas/ultraestructura , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Inmunofenotipificación , Mediadores de Inflamación/metabolismo , Neoplasias Pulmonares/patología , Ratones
6.
Nano Lett ; 19(10): 6845-6852, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31478675

RESUMEN

Two-dimensional (2D) layered semiconductors, with their ultimate atomic thickness, have shown promise to scale down transistors for modern integrated circuitry. However, the electrical contacts that connect these materials with external bulky metals are usually unsatisfactory, which limits the transistor performance. Recently, contacting 2D semiconductors using coplanar 2D conductors has shown promise in reducing the problematic high contact resistance. However, many of these methods are not ideal for scaled production. Here, we report on the large-scale, spatially controlled chemical assembly of the integrated 2H-MoTe2 field-effect transistors (FETs) with coplanar metallic 1T'-MoTe2 contacts via phase engineered approaches. We demonstrate that the heterophase FETs exhibit ohmic contact behavior with low contact resistance, resulting from the coplanar seamless contact between 2H and 1T'-MoTe2 confirmed by transmission electron microscopy characterizations. The average mobility of the heterophase FETs was measured to be as high as 23 cm2 V-1 s-1 (comparable with those of exfoliated single crystals), due to the large 2H-MoTe2 single-crystalline domain size (486 ± 187 µm). By developing a patterned growth method, we realize the 1T'-MoTe2 gated heterophase FET array whose components of the channel, gate, and contacts are all 2D materials. Finally, we transfer the heterophase device array onto a flexible substrate and demonstrate the near-infrared photoresponse with high photoresponsivity (∼1.02 A/W). Our study provides a basis for the large-scale application of phase-engineered coplanar MoTe2 semiconductor-metal structure in advanced electronics and optoelectronics.

7.
J Cell Physiol ; 234(10): 17775-17785, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30864145

RESUMEN

Circular RNAs have been found to be aberrantly expressed in tumors and their significance in tumorigenesis has been focused on. The role of circDYNC1H1 in hepatocellular carcinoma (HCC) pathogenesis and its relationship with miR-140-5p were explored. The expression of circDYNC1H1, miR-140-5p, and SULT2B1 in HCC tissues and cells was measured, and Pearson's analysis was used to analyze their expression correlation. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Transwell assays were performed to determine cell proliferation and migration. Binding between circDYNC1H1 and miR-140-5p was evaluated with RNA pull-down assay. A luciferase reporter assay was conducted to assess the interaction between circDYNC1H1 and miR-140-5p and between miR-140-5p and SULT2B1. circDYNC1H1 was highly expressed in HCC tissues (n = 20), and it was negatively associated with the expression of miR-140-5p but positively correlated with SULT2B1 messenger RNA expression. circDYNC1H1 was upregulated in cell lines of HCC. Interference of circDYNC1H1 suppressed cell proliferation and migration of HCC. circDYNC1H1 acted as a sponge of miR-140-5p. miR-140-5p controlled SULT2B1 expression by targeting its 3'-untranslated region. circDYNC1H1 enhanced SULT2B1 expression via sponging miR-140-5p. Downregulation of circDYNC1H1 disturbed cell proliferation and migration of HCC through miR-140-5p/SULT2B1 pathway. Silencing of circDYNC1H1 delayed tumor growth in HCC mouse model. Acting like a sponge of miR-140-5p, silenced circDYNC1H1 downregulated SULT2B1 to restrain HCC cell proliferation and migration, which is adverse to HCC growth and progression.


Asunto(s)
Carcinoma Hepatocelular/genética , Movimiento Celular/genética , Proliferación Celular/genética , Dineínas Citoplasmáticas/genética , Regulación hacia Abajo/genética , Neoplasias Hepáticas/genética , MicroARNs/genética , Regiones no Traducidas 3'/genética , Animales , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Línea Celular , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Regulación hacia Arriba/genética
8.
Biochem Biophys Res Commun ; 512(3): 544-551, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30914199

RESUMEN

Tumor metastasis accounts for most tumor-associated mortality and is closely related with stromal fibroblasts in the tumor microenvironment. It was reported that fibroblasts promoted tumor metastasis through directly leading tumor cell invasion; however, inflammatory microenvironment in the growing tumor may influence the outcome. Here, we found that the cytokine IFNγ, a key immune mediator secreted by T cells, could alter mouse lung tumor associated fibroblast-leading LLC tumor cell invasion in Matrigel. The motility of fibroblasts and adhesion with tumor cells were dramatically impaired upon IFNγ stimulation. We further found that IFNγ reduced the expression of N-cadherin on the surface of fibroblasts through upregulating SMAD7 and suppressing the downstream SMAD2 phosphorylation. N-cadherin was essential for fibroblast motility and adhesions with tumor cells. Moreover, fibroblasts could promote tumor progression and the deficiency of IFNγR signaling in fibroblasts reduced liver metastasis of LLC tumor in vivo. Collectively, our results demonstrate that IFNγ inhibits fibroblast-leading tumor cell invasion by inhibiting the motility of fibroblasts and their adhesion with tumor cells. The findings indicate that inflammatory cytokines in the tumor microenvironment may regulate the fibroblast-associated tumor metastasis.


Asunto(s)
Cadherinas/inmunología , Fibroblastos/patología , Interferón gamma/inmunología , Neoplasias Pulmonares/patología , Invasividad Neoplásica/patología , Animales , Cadherinas/análisis , Línea Celular Tumoral , Movimiento Celular , Células Cultivadas , Femenino , Fibroblastos/inmunología , Neoplasias Pulmonares/inmunología , Ratones Endogámicos C57BL , Invasividad Neoplásica/inmunología
9.
Int J Mol Sci ; 17(10)2016 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-27783047

RESUMEN

Skeletal muscle has a major role in locomotion and muscle disorders are associated with poor regenerative efficiency. Therefore, a deeper understanding of muscle regeneration is needed to provide a new insight for new therapies. CaMKK2 plays a role in the calcium/calmodulin-dependent kinase cascade; however, its role in skeletal muscle remains unknown. Here, we found that CaMKK2 expression levels were altered under physiological and pathological conditions including postnatal myogensis, freeze or cardiotoxin-induced muscle regeneration, and Duchenne muscular dystrophy. Overexpression of CaMKK2 suppressed C2C12 myoblast proliferation and differentiation, while inhibition of CaMKK2 had opposite effect. We also found that CaMKK2 is able to activate AMPK in C2C12 myocytes. Inhibition of AMPK could attenuate the effect of CaMKK2 overexpression, while AMPK agonist could abrogate the effect of CaMKK2 knockdown on C2C12 cell differentiation and proliferation. These results suggest that CaMKK2 functions as an AMPK kinase in muscle cells and AMPK mediates the effect of CaMKK2 on myoblast proliferation and differentiation. Our data also indicate that CaMKK2 might inhibit myoblast proliferation through AMPK-mediated cell cycle arrest by inducing cdc2-Tyr15 phosphorylation and repress differentiation through affecting PGC1α transcription. Lastly, we show that overexpressing CaMKK2 in the muscle of mice via electroporation impaired the muscle regeneration during freeze-induced injury, indicating that CaMKK2 could serve as a potential target to treat patients with muscle injury or myopathies. Together, our study reveals a new role for CaMKK2 as a negative regulator of myoblast differentiation and proliferation and sheds new light on the molecular regulation of muscle regeneration.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Diferenciación Celular , Proliferación Celular , Músculo Esquelético/fisiología , Mioblastos/citología , Regeneración , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Línea Celular , Ratones , Mioblastos/metabolismo , Transducción de Señal , Regulación hacia Arriba
10.
Front Neurol ; 15: 1363358, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523614

RESUMEN

Background: Minor ischemic stroke (MIS) is associated with early neurological deterioration (END) and poor prognosis. Here, we investigated whether argatroban administration can mitigate MIS-associated END and improve functional outcomes by monitoring activated partial thrombin time (APTT). Methods: Data were collected for patients with MIS admitted to our hospital from January 2019 to December 2022. Patients were divided into a dual antiplatelet therapy (DAPT) group (aspirin + clopidogrel) and an argatroban group (aspirin + argatroban). Those in the latter group who achieved a target APTT of 1.5-3-fold that of baseline and <100 s at 2 h after argatroban infusion were included in the argatroban subgroup. The primary outcome was the END rate of the DAPT group versus that of the argatroban group or the argatroban subgroup. Secondary outcomes included the proportion of patients with modified Rankin Scale (mRS) 0-2 at 7 and 90 days. In addition, baseline date were compared between patients with and without END in the argatroban group. Results: 363 patients were included in the DAPT group and 270 in the argatroban group. There were no significant differences in any above outcome between them. 207 pairs were included in the DAPT group and the argatroban subgroup after 1:1 propensity score matching (PSM). Significant differences were observed in the proportion of END (OR, 2.337; 95% CI, 1.200-4.550, p = 0.011) and mRS 0-2 at 7 days (OR, 0.624; 95% CI, 0.415-0.939, p = 0.023), but not in mRS 0-2 at 90 days or the hemorrhagic events between the two groups. In the argatroban group, univariate analysis showed that the rate of diabetes (OR, 2.316; 95% CI, 1.107-4.482, p = 0.023), initial random blood glucose (OR, 1.235; 95% CI, 1.070-1.425, p = 0.004), drinking history (OR, 0.445; 95% CI, 0.210-0.940, p = 0.031) or those reaching the target APTT (OR, 0.418; 95% CI, 0.184-0.949, p = 0.033) was significantly different among patients with and without END. However, there were no statistical differences in these parameters between them following multivariate analysis. Conclusion: In patients with MIS, argatroban administration and reaching the target APTT can reduce the incidence of END and improve short-term functional prognosis.

11.
J Exp Clin Cancer Res ; 43(1): 140, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38730468

RESUMEN

BACKGROUND: PTEN loss has been identified in various tumor types and is linked to unfavorable clinical outcomes. In addition to PTEN mutation, multiple mechanisms contribute to PTEN loss during tumor development. However, the natural selection process of PTEN-deficient tumor cells remains unclear. Here, we aimed at further elucidating the role of PTEN-L in tumor progression. METHODS: PTEN knockout cell lines were generated using CRISPR/Cas9 technology. Ni-NTA affinity column chromatography was employed for PTEN-L purification. Tumor cell metastasis was evaluated in murine models and observed using the IVIS Spectrum Imaging System. RNA-sequencing, western blotting, PCR, flow cytometry, and cell proliferation assays were employed to investigate tumor cell dormancy and related mechanisms. RESULTS: The chemotherapeutic drugs, cisplatin, paclitaxel, and doxorubicin, induced tumor cells to secrete PTEN-long (PTEN-L), which shields PTEN-deficient tumor cells from chemotherapy-induced apoptosis better than it shields PTEN-intact cells. Further investigation revealed that PTEN-L treatment induced dormancy in PTEN-null tumor cells, characterized by an increase in p16 and p27 levels, cell-cycle arrest, reduced cell proliferation, and enhanced DNA repair. Furthermore, PTEN-L treatment selectively promoted the accumulation and growth of PTEN-null tumor cells in the lungs of C57BL/6J mice, while evading immune surveillance. Mechanistically, PTEN-L induced dormancy in PTEN-null tumor cells by activating the p38 signaling pathway. Addition of a p38 inhibitor effectively reversed dormancy and growth of PTEN-deficient tumor cells in the lungs. We also demonstrated that PTEN expression played a pivotal role in determining the outcome of PTEN-L-mediated antitumor therapy. CONCLUSIONS: In summary, PTEN-L was identified as a potent inducer of dormancy in PTEN-deficient tumor cells, which increased their efficient selection within the tumor microenvironment.


Asunto(s)
Fosfohidrolasa PTEN , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Animales , Ratones , Humanos , Línea Celular Tumoral , Antineoplásicos/farmacología , Proliferación Celular , Apoptosis , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética
12.
MedComm (2020) ; 5(6): e605, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38868328

RESUMEN

During the ageing process, TNF-α can promote the expansion of myeloid-derived suppressor cells (MDSCs). However, it remains unclear which receptor(s) of TNF-α are involved in and how they modulate this process. Here, we report that TNFR2 hyperexpression induced by either TNF-α or IL-6, two proinflammatory factors of senescence-associated secretory phenotype (SASP), causes cellular apolarity and differentiation inhibition in aged MDSCs. Ex vivo overexpression of TNFR2 in young MDSCs inhibited their polarity and differentiation, whereas in vivo depletion of Tnfr2 in aged MDSCs promotes their differentiation. Consequently, the age-dependent increase of TNFR2 versus unaltered TNFR1 expression in aged MDSCs significantly shifts the balance of TNF-α signaling toward the TNFR2-JNK axis, which accounts for JNK-induced impairment of cell polarity and differentiation failure of aged MDSCs. Consistently, inhibiting JNK attenuates apolarity and partially restores the differentiation capacity of aged MDSCs, suggesting that upregulated TNFR2/JNK signaling is a key factor limiting MDSC differentiation during organismal ageing. Therefore, abnormal hyperexpression of TNFR2 represents a general mechanism by which extrinsic SASP signals disrupt intrinsic cell polarity behavior, thereby arresting mature differentiation of MDSCs with ageing, suggesting that TNFR2 could be a potential therapeutic target for intervention of ageing through rejuvenation of aged MDSCs.

13.
Adv Mater ; 36(24): e2310944, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38470991

RESUMEN

Anomalous transport of topological semimetals has generated significant interest for applications in optoelectronics, nanoscale devices, and interconnects. Understanding the origin of novel transport is crucial to engineering the desired material properties, yet their orders of magnitude higher transport than single-particle mobilities remain unexplained. This work demonstrates the dramatic mobility enhancements result from phonons primarily returning momentum to electrons due to phonon-electron dominating over phonon-phonon scattering. Proving this idea, proposed by Peierls in 1932, requires tuning electron and phonon dispersions without changing symmetry, topology, or disorder. This is achieved by combining de Haas - van Alphen (dHvA), electron transport, Raman scattering, and first-principles calculations in the topological semimetals MX2 (M = Nb, Ta and X = Ge, Si). Replacing Ge with Si brings the transport mobilities from an order magnitude larger than single particle ones to nearly balanced. This occurs without changing the crystal structure or topology and with small differences in disorder or Fermi surface. Simultaneously, Raman scattering and first-principles calculations establish phonon-electron dominated scattering only in the MGe2 compounds. Thus, this study proves that phonon-drag is crucial to the transport properties of topological semimetals and provides insight to engineer these materials further.

14.
Int J Biol Sci ; 19(5): 1490-1508, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056922

RESUMEN

IFNγ has long been recognised as a key mediator of tumour immunity and angiostasis. However, IFNγ modulation for cancer therapy is still unsuccessful due to its complex effects on various host cells. In this study, we found that treatment of Lewis lung carcinoma transplants with cisplatin often caused IFNγ-dependent tumour vascular damage. IFNγ induced endothelial glycolysis and lactate production, leading to enhanced endocytosis of vascular endothelial (VE)-cadherin and vessel leakage. We have also developed anti-IFNγ nanoparticles coated with a clot-binding peptide CREKA (CREKA-lipo-anti-IFNγ), which targets the fibrin-fibronectin complex that appears in the leaky site of damaged tumour blood vessels. Blocking IFNγ activity in the leakage site of capillaries using nanoparticles rescued VE-cadherin distribution on the endothelial cellular surface, promoted blood vessel integrity, and improved drug delivery. In conclusion, IFNγ blockade in capillary leak site protected tumour blood vessels from lactate-dependent VE-cadherin loss and enhanced drug delivery during chemotherapy, which provides a basis for tissue-specific IFNγ blockade for tumour therapy.


Asunto(s)
Ácido Láctico , Neoplasias , Humanos , Cadherinas/metabolismo , Permeabilidad Capilar , Endocitosis , Ácido Láctico/farmacología , Interferón gamma/antagonistas & inhibidores
15.
J Control Release ; 357: 133-148, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36972863

RESUMEN

Spleen is an ideal site for initiating and amplifying antigen-specific immune response. However, spleen-selective antigen delivery has limited tumor therapeutic efficacy owing to an inadequate cytotoxic T-cell immune response. In this study, we designed a spleen-selective mRNA vaccine that delivered unmodified mRNA and Toll-like Receptor (TLR) agonists to the spleen after systemic administration, resulting in a sufficient and persistent antitumor cellular immune response with potent tumor immunotherapeutic efficacy. To establish potent tumor vaccines (sLNPs-OVA/MPLA), we co-loaded stearic acid doped lipid nanoparticles with ovalbumin (OVA)-coding mRNA and TLR4 agonists (MPLA). We found that sLNPs-OVA/MPLA facilitated tissue-specific mRNA expression in the spleen after intravenous injection and elicited enhanced adjuvant activity with Th1 immune responses by activating multiple TLRs. In a prophylactic mouse model, sLNPs-OVA/MPLA induced a potent antigen-specific cytotoxic T cell immune response and ultimately prevented the growth of EG.7-OVA tumors with persistent immune memory protection. In addition, sLNPs-OVA/MPLA effectively delayed the tumor growth of EG.7-OVA subcutaneously transplanted lymphoma and lung metastasis formation of B16F10-OVA intravenously injected melanoma. This study showed that the co-delivery of mRNA antigens and appropriate TLR agonists could significantly improve the antitumor immunotherapeutic efficacy of spleen-targeted mRNA vaccines via synergistic immunostimulation and Th1 immune responses.


Asunto(s)
Bazo , Receptor Toll-Like 4 , Animales , Ratones , Receptor Toll-Like 4/genética , Inmunización , Adyuvantes Inmunológicos , Inmunidad Celular , Antígenos , Ovalbúmina , Ratones Endogámicos C57BL
16.
Adv Mater ; 35(22): e2210464, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36964940

RESUMEN

Reactive oxygen species (ROS)-mediated tumor catalytic therapy is typically hindered by gap junction proteins that form cell-to-cell channels to remove cytotoxic ROS, thereby protecting tumor cells from oxidative damage. In this work, a multifunctional nanozyme, FePGOGA, is designed and prepared by Fe(III)-mediated oxidative polymerization (FeP), followed by glucose oxidase (GOx) and GAP19 peptides co-loading through electrostatic and π-π interactions. The FePGOGA nanozyme exhibits excellent cascade peroxidase- and glutathione-oxidase-like activities that efficiently catalyze hydrogen peroxide conversion to hydroxyl radicals and convert reduced glutathione to oxidized glutathione disulfide. The loaded GOx starves the tumors and aggravates tumor oxidative stress through glucose decomposition, while GAP19 peptides block the hemichannels by inducing degradation of Cx43, thus increasing the accumulation of intracellular ROS, and decreasing the transport of intracellular glucose. Furthermore, the ROS reacts with primary amines of heat shock proteins to destroy their structure and function, enabling tumor photothermal therapy at the widely sought-after mild temperature (mildPTT, ≤45 °C). In vivo experiments demonstrate the significant antitumor effectof FePGOGA on cal27 xenograft tumors under near-infrared light irradiation. This study demonstrates the successful ablation of gap junction proteins to overcome resistance to ROS-mediated therapy, providing a regulator to suppress tumor self-preservation during tumor starvation, catalytic therapy, and mildPTT.


Asunto(s)
Conexinas , Neoplasias , Humanos , Terapia Fototérmica , Compuestos Férricos , Especies Reactivas de Oxígeno , Temperatura , Neoplasias/terapia , Peróxido de Hidrógeno , Glucosa Oxidasa , Línea Celular Tumoral , Microambiente Tumoral
17.
Oncogenesis ; 12(1): 18, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36990991

RESUMEN

Cancer-associated fibroblasts (CAFs), the principal constituent of the heterogenous tumor microenvironment, have been shown to promote tumor progression; however, the underlying mechanism is still less clear. Here, we find that transgelin (TAGLN) protein levels increased in primary CAFs isolated from human lung cancer, compared with those in paired normal fibroblasts. Tumor microarrays (TMAs) revealed that increased stromal TAGLN levels correlates with more lymphatic metastasis of tumor cells. In a subcutaneous tumor transplantation model, overexpression of Tagln in fibroblasts also increased tumor cell spread in mice. Further experiments show that Tagln overexpression promoted fibroblast activation and mobility in vitro. And TAGLN facilitates p-p65 entry into the nucleus, thereby activating the NF-κB signaling pathway in fibroblasts. Activated fibroblasts promote lung cancer progression via enhancing the release of pro-inflammatory cytokines, especially interleukine-6 (IL-6). Our study revealed that the high levels of stromal TAGLN is a predictive risk factor for patients with lung cancer. Targeting stromal TAGLN may present an alternative therapeutic strategy against lung cancer progression.

18.
Nat Commun ; 13(1): 5919, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207295

RESUMEN

Tumour-stroma cell interactions impact cancer progression and therapy responses. Intercellular communication between fibroblasts and cancer cells using various soluble mediators has often been reported. In this study, we find that a zinc-transporter (ZIP1) positive tumour-associated fibroblast subset is enriched after chemotherapy and directly interconnects lung cancer cells with gap junctions. Using single-cell RNA sequencing, we identify several fibroblast subpopulations, among which Zip1+ fibroblasts are highly enriched in mouse lung tumours after doxorubicin treatment. ZIP1 expression on fibroblasts enhances gap junction formation in cancer cells by upregulating connexin-43. Acting as a Zn2+ reservoir, ZIP1+ fibroblasts absorb and transfer Zn2+ to cancer cells, leading to ABCB1-mediated chemoresistance. Clinically, ZIP1high stromal fibroblasts are also associated with chemoresistance in human lung cancers. Taken together, our results reveal a mechanism by which fibroblasts interact directly with tumour cells via gap junctions and contribute to chemoresistance in lung cancer.


Asunto(s)
Uniones Comunicantes , Neoplasias Pulmonares , Animales , Comunicación Celular/fisiología , Doxorrubicina/metabolismo , Doxorrubicina/farmacología , Fibroblastos/metabolismo , Uniones Comunicantes/metabolismo , Humanos , Neoplasias Pulmonares/patología , Ratones , Zinc/metabolismo
19.
Int J Biol Sci ; 18(4): 1476-1490, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280672

RESUMEN

Chemotherapeutic drugs have been successfully used to treat several cancers, including melanoma. However, metastasis occasionally occurs after chemotherapy. Here, we reported that paclitaxel (PTX) treatment for B16F10 tumour in mice led to an enhanced lymphatic metastasis of the melanoma cells, although a significant inhibition of tumour growth at the injection site was observed. Further study demonstrated that PTX upregulated the expression of C-C chemokine receptor type 7 (CCR7) in B16F10 cells, enhancing their migration through the activation of JNK and p38 signalling pathways. Loss of CCR7 or blockade of C-C motif chemokine ligand 21 (CCL21)/CCR7 axis abolished the pro-migration effect of PTX on B16F10 melanoma cells. Importantly, combination of PTX and CCR7 mAb could simultaneously delay the tumour growth and reduce the lymphatic metastasis in B16F10 melanoma. The blockade of CCL21/CCR7 axis may collectively serve as a strategy for lymphatic metastasis in some melanoma after chemotherapy.


Asunto(s)
Quimiocina CCL21 , Melanoma , Animales , Línea Celular Tumoral , Movimiento Celular , Quimiocina CCL21/metabolismo , Quimiocina CCL21/farmacología , Ligandos , Metástasis Linfática , Melanoma/tratamiento farmacológico , Ratones , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Receptores CCR7/metabolismo
20.
Cancer Res ; 82(13): 2472-2484, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35580275

RESUMEN

Migration of myeloid-derived suppressor cells (MDSC) out of the circulation, across vascular walls, and into tumor is crucial for their immunosuppressive activity. A deeper understanding of critical junctional molecules and the regulatory mechanisms that mediate the extravasation of MDSCs could identify approaches to overcome cancer immunosuppression. In this study, we used mice deficient in tight junction protein Claudin-12 (Cldn12) compared with wild-type mice and found that loss of host Cldn12 inhibited the growth of transplanted tumors, reduced intratumoral accumulation of MDSCs, increased antitumor immune responses, and decreased tumor vascular density. Further studies revealed that Cldn12 expression on the cell surface of both MDSCs and endothelial cells (EC) is required for MDSCs transit across tumor vascular ECs. Importantly, expression of Cldn12 in MDSCs was modulated by GM-CSF in an AKT-dependent manner. Therefore, our results indicate that Cldn12 could serve as a promising target for restoring the antitumor response by interfering with MDSCs transendothelial migration. SIGNIFICANCE: Claudin-12-mediated homotypic interactions are critical for migration of myeloid-derived suppressor cells across vascular walls into tumor tissue, providing a potential therapeutic approach to overcome cancer immunosuppression.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Animales , Claudinas/metabolismo , Células Endoteliales , Ratones , Neoplasias/genética , Neoplasias/metabolismo , Migración Transendotelial y Transepitelial
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda