RESUMEN
BACKGROUND: Children born with very low birth weight (VLBW) are at higher risk for cognitive impairment, including language deficits and sensorimotor difficulties. Voice-evoked response (P1m), which has been suggested as a language development biomarker in young children, remains unexplored for its efficacy in VLBW children. Furthermore, the relation between P1m and sensory difficulties in VLBW children remains unclear. METHODS: 40 children with VLBW were recruited at 5-to-6 years old (26 male, 14 female, mean age of months ± SD, 80.0 ± 4.9). We measured their voice-evoked brain response using child-customized magnetoencephalography (MEG) and examined the relation between P1m and language conceptual inference ability and sensory characteristics. RESULTS: The final sample comprised 36 children (23 boys, 13 girls; ages 61-86 months; gestational ages 24-36 weeks). As a result of multiple regression analysis, voice-evoked P1m in the left hemisphere was correlated significantly with language ability (ß = 0.414 P = 0.015) and sensory hypersensitivity (ß = 0.471 P = 0.005). CONCLUSION: Our findings indicate that the relation between P1m and language conceptual inference ability observed in term children in earlier studies is replicated in VLBW children, and suggests P1m intensity as a biomarker of sensory sensitivity characteristics. IMPACT: We investigated brain functions related to language development and sensory problems in very low birth-weight children. In very low birth weight children at early school age, brain responses to human voices are associated with language conceptual inference ability and sensory hypersensitivity. These findings promote a physiological understanding of both language development and sensory characteristics in very low birth weight children.
RESUMEN
Parent-child book reading is important for fostering the development of various lifelong cognitive and social abilities in young children. Despite numerous reports describing the effects of familiarity on shared reading for children, the exact neural basis of the functional network architecture remains unclear. We conducted Magnet-Encephalographic (MEG) experiments using graph theory to elucidate the role of familiarity in shared reading in a child's brain network and to measure the connectivity dynamics of a child while Listening to Storybook Reading (LSBR), which represents the daily activity of shared book reading between the child and caregiver. The LSBR task was performed with normally developing preschool- and school-age children (Nâ¯=â¯15) under two conditions: reading by their own mother (familiar condition) vs. an experimenter (unfamiliar condition). We used the phase lag index (PLI), which captures synchronization of MEG signals, to estimate functional connectivity. For the whole brain network topology, an undirected weighted graph was produced using 68 brain regions as nodes and interregional PLI values as edges for five frequency bands. Behavioral data (i.e., the degree of attention and facial expressions) were evaluated from video images of the child's face during the two conditions. Our results showed enhanced widespread functional connectivity in the alpha band during the mother condition. In the mother condition, the whole brain network in the alpha band exhibited topographically high local segregation with high global integration, indicating an increased small-world property. Results of the behavioral analysis revealed that children were more attentive and showed more positive facial expressions in the mother condition than in the experimenter condition. Behavioral data were significantly correlated with graph metrics in the mother condition but not in the experimenter condition. In this study, we identified the neural correlates of a familiarity effect in children's brain connectivity dynamics during LSBR. Furthermore, these familiarity-related brain dynamics were closely linked to the child's behavior. Graph theory applied to MEG data may provide useful insight into the familiarity-related child brain response in a naturalistic setting and its relevance to child attitudes.
Asunto(s)
Percepción Auditiva/fisiología , Encéfalo/fisiología , Magnetoencefalografía/métodos , Red Nerviosa/fisiología , Lectura , Reconocimiento en Psicología/fisiología , Niño , Preescolar , Femenino , Humanos , MasculinoRESUMEN
(1) Background: Atypical auditory perception has been reported in individuals with autism spectrum disorder (ASD). Altered auditory evoked brain responses are also associated with childhood ASD. They are likely to be associated with atypical brain maturation. (2) Methods: This study examined children aged 5-8 years old: 29 with ASD but no intellectual disability and 46 age-matched typically developed (TD) control participants. Using magnetoencephalography (MEG) data obtained while participants listened passively to sinusoidal pure tones, bilateral auditory cortical response (P1m) was examined. (3) Results: Significantly shorter P1m latency in the left hemisphere was found for children with ASD without intellectual disabilities than for children with TD. Significant correlation between P1m latency and language conceptual ability was found in children with ASD, but not in children with TD. (4) Conclusions: These findings demonstrated atypical brain maturation in the auditory processing area in children with ASD without intellectual disability. Findings also suggest that ASD has a common neural basis for pure-tone sound processing and language development. Development of brain networks involved in language concepts in early childhood ASD might differ from that in children with TD.
Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Discapacidad Intelectual/fisiopatología , Tiempo de Reacción/fisiología , Corteza Auditiva/fisiopatología , Niño , Preescolar , Potenciales Evocados Auditivos/fisiología , Femenino , Humanos , Magnetoencefalografía/métodos , MasculinoRESUMEN
Children make rapid transitions in their neural and intellectual development. Compared to other brain regions, the auditory cortex slowly matures, and children show immature auditory brain activity. This auditory neural plasticity largely occurs as a response to human-voice stimuli, which are presented more often than other stimuli, and can even be observed in the brainstem. Early psychologists have proposed that sensory processing and intelligence are closely related to each other. In the present study, we identified brain activity related to human-voice processing and investigated a crucial neural correlate of child development and intelligence. We also examined the neurophysiological activity patterns during human-voice processing in young children aged 3 to 8 years. We investigated auditory evoked fields (AEFs) and oscillatory changes using child-customized magnetoencephalography within a short recording time (<6 min). We examined the P1m component of AEFs, which is a predominant component observed in young children. The amplitude of the left P1m was highly correlated with age, and the amplitude of the right P1m was highly correlated with the intelligence quotient. For auditory-related oscillatory changes, we found a positive correlation between the intelligence quotient and percent change of gamma increase relative to baseline in the right auditory cortex. We replicated the finding of age-related changes in auditory brain activity in young children, which is related to the slow maturation of the auditory cortex. In addition, these results suggest a close link between intelligence and auditory sensory processing, especially in the right hemisphere.
Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Ondas Encefálicas/fisiología , Desarrollo Infantil/fisiología , Potenciales Evocados Auditivos/fisiología , Inteligencia/fisiología , Magnetoencefalografía , Percepción Social , Niño , Preescolar , Femenino , Lateralidad Funcional/fisiología , Ritmo Gamma/fisiología , Humanos , Masculino , Percepción del Habla/fisiología , VozRESUMEN
Background: Atypical peak alpha frequency (PAF) has been reported in children with autism spectrum disorder (ASD); however, the relationships between PAF, age, and autistic traits remain unclear. This study was conducted to investigate and compare the resting-state PAF of young children with ASD and their typically developing (TD) peers using magnetoencephalography (MEG). Methods: Nineteen children with ASD and 24 TD children, aged 5-7 years, underwent MEG under resting-state conditions. The PAFs in ten brain regions were calculated, and the associations between these findings, age, and autistic traits, measured using the Social Responsiveness Scale (SRS), were examined. Results: There were no significant differences in PAF between the children with ASD and the TD children. However, a unique positive association between age and PAF in the cingulate region was observed in the ASD group, suggesting the potential importance of the cingulate regions as a neurophysiological mechanism underlying distinct developmental trajectory of ASD. Furthermore, a higher PAF in the right temporal region was associated with higher SRS scores in TD children, highlighting the potential role of alpha oscillations in social information processing. Conclusions: This study emphasizes the importance of regional specificity and developmental factors when investigating neurophysiological markers of ASD. The distinct age-related PAF patterns in the cingulate regions of children with ASD and the association between right temporal PAF and autistic traits in TD children provide novel insights into the neurobiological underpinnings of ASD. These findings pave the way for future research on the functional implications of these neurophysiological patterns and their potential as biomarkers of ASD across the lifespan.
RESUMEN
In previous magnetoencephalography (MEG) studies, children with autism spectrum disorder (ASD) have been shown to respond differently to speech stimuli than typically developing (TD) children. Quantitative evaluation of this difference in responsiveness may support early diagnosis and intervention for ASD. The objective of this research is to investigate the relationship between syllable-induced P1m and social impairment in children with ASD and TD children. We analyzed 49 children with ASD aged 40-92 months and age-matched 26 TD children. We evaluated their social impairment by means of the Social Responsiveness Scale (SRS) and their intelligence ability using the Kaufman Assessment Battery for Children (K-ABC). Multiple regression analysis with SRS score as the dependent variable and syllable-induced P1m latency or intensity and intelligence ability as explanatory variables revealed that SRS score was associated with syllable-induced P1m latency in the left hemisphere only in the TD group and not in the ASD group. A second finding was that increased leftward-lateralization of intensity was correlated with higher SRS scores only in the ASD group. These results provide valuable insights but also highlight the intricate nature of neural mechanisms and their relationship with autistic traits.
Asunto(s)
Trastorno del Espectro Autista , Niño , Humanos , Trastorno del Espectro Autista/diagnóstico , Magnetoencefalografía , Inteligencia/fisiología , Pruebas de Inteligencia , Grupo ParitarioRESUMEN
Introduction: Measuring whole-brain networks of the 40 Hz auditory steady state response (ASSR) is a promising approach to describe the after-effects of transcranial direct current stimulation (tDCS). The main objective of this study was to evaluate the effect of tDCS on the brain network of 40 Hz ASSR in healthy adult males using graph theory. The second objective was to identify a population in which tDCS effectively modulates the brain network of 40 Hz ASSR. Methods: This study used a randomized, sham-controlled, double-blinded crossover approach. Twenty-five adult males (20-24 years old) completed two sessions at least 1 month apart. The participants underwent cathodal or sham tDCS of the dorsolateral prefrontal cortex, after which 40 Hz ASSR was measured using magnetoencephalography. After the signal sources were mapped onto the Desikan-Killiany brain atlas, the statistical relationships between localized activities were evaluated in terms of the debiased weighted phase lag index (dbWPLI). Weighted and undirected graphs were constructed for the tDCS and sham conditions based on the dbWPLI. Weighted characteristic path lengths and clustering coefficients were then measured and compared between the tDCS and sham conditions using mixed linear models. Results: The characteristic path length was significantly lower post-tDCS simulation (p = 0.04) than after sham stimulation. This indicates that after tDCS simulation, the whole-brain networks of 40 Hz ASSR show a significant functional integration. Simple linear regression showed a higher characteristic path length at baseline, which was associated with a larger reduction in characteristic path length after tDCS. Hence, a pronounced effect of tDCS is expected for those who have a less functionally integrated network of 40 Hz ASSR. Discussion: Given that the healthy brain is functionally integrated, we conclude that tDCS could effectively normalize less functionally integrated brain networks rather than enhance functional integration.
RESUMEN
Recent research has shown that the Default Mode Network (DMN) typically exhibits increased activation during processing of social and personal information but shows deactivation during working memory (WM) tasks. Previously, we reported the Frontal Parietal Network (FPN) and DMN showed coactivation during task preparation whereas the DMN exhibited deactivation during task execution in working memory tasks. Aging research has shown that older adults exhibited decreased functional connectivity in the DMN relative to younger adults. Here, we investigated whether age-related cognitive decline is related to a reduced relationship between the FPN and DMN using a working memory task during the execution period. First, we replicated our previous finding that the FPN and DMN showed coactivation during the preparation period, whereas the DMN showed deactivation during the execution period. The older adults showed reduced DMN activity during task preparation and reduced deactivation during task execution; however, they exhibited a higher magnitude of activation in the FPN than the young individuals during task execution. Functional connectivity analyses showed that the elderly group, compared to the young group, showed weaker correlations within the FPN and the DMN, weaker positive correlations between the FPN and DMN during task preparation, and weaker negative correlations between the FPN and DMN during execution. The results suggest that cognitive decline in the older adults might be related to reduced connectivity within the DMN as well as between the FPN and DMN.
RESUMEN
Aim: This study aimed to investigate gamma oscillations related to face processing of children with autism spectrum disorders and typically developed children using magnetoencephalography. Methods: We developed stimuli that included naturalistic real-time eye-gaze situations between participants and their mothers. Eighteen young children with autism spectrum disorders (62-97 months) and 24 typically developed children (61-79 months) were included. The magnetoencephalography data were analyzed in the bilateral banks of the superior temporal sulcus, fusiform gyrus, and pericalcarine cortex for frequency ranges 30-59 and 61-90 Hz. The gamma oscillation normalized values were calculated to compare the face condition (children gazing at mother's face) and control measurements (baseline) using the following formula: (face - control)/(face + control). Results: The results revealed significant differences in gamma oscillation normalized values in the low gamma band (30-59 Hz) in the right banks of the superior temporal sulcus, right fusiform gyrus, and right pericalcarine cortex between children with autism spectrum disorders and typically developed children. Furthermore, there were significant differences in gamma oscillation normalized values in the high gamma band (61-90 Hz) in the right banks of the superior temporal sulcus, bilateral fusiform gyrus, and bilateral pericalcarine cortex between the groups. Conclusion: This report is the first magnetoencephalography study revealing atypical face processing in young children with autism spectrum disorders using relevant stimuli between participants and their mothers. Our naturalistic paradigm provides a useful assessment of social communication traits and a valuable insight into the underlying neural mechanisms in children with autism spectrum disorders.
RESUMEN
Individuals with sub-threshold autism spectrum disorder (ASD) are those who have social communication difficulties but do not meet the full ASD diagnostic criteria. ASD is associated with an atypical brain network; however, no studies have focused on sub-threshold ASD. Here, we used the graph approach to investigate alterations in the brain networks of children with sub-threshold ASD, independent of a clinical diagnosis. Graph theory is an effective approach for characterizing the properties of complex networks on a large scale. Forty-six children with ASD and 31 typically developing children were divided into three groups (i.e., ASD-Unlikely, ASD-Possible, and ASD-Probable groups) according to their Social Responsiveness Scale scores. We quantified magnetoencephalographic signals using a graph-theoretic index, the phase lag index, for every frequency band. Resultantly, the ASD-Probable group had significantly lower small-worldness (SW) in the delta, theta, and beta bands than the ASD-Unlikely group. Notably, the ASD-Possible group exhibited significantly higher SW than the ASD-Probable group and significantly lower SW than the ASD-Unlikely group in the delta band only. To our knowledge, this was the first report of the atypical brain network associated with sub-threshold ASD. Our findings indicate that magnetoencephalographic signals using graph theory may be useful in detecting sub-threshold ASD.
RESUMEN
Aim: Although atypical sensory motor processing has been investigated in children with autism spectrum disorder (ASD), whether or not atypical sensory motor processing is related to altered language function in children with ASD remains unclear. Methods: This study examined the relationship between sensory motor processing and language conceptual inference ability in 3-10-year-old children with (n = 61) and without (n = 114) ASD. Language performance was assessed using the language conceptual inference task of the Kaufman Assessment Battery for Children (K-ABC). Sensory processing was assessed using the Caregiver Sensory Profile. Results: In children with ASD, altered processing of the fine motor/perceptual factor scored by sensory profile was found to be significantly related to language conceptual inference ability in the K-ABC, representing the integrated abilities of language comprehension and language expression, which reflect language semantic concept formation. Conclusions: For children with ASD, the results suggest a relationship between difficulties of integrating sensory information perceived from the body adjusting fine movement and deficiencies of language semantic conceptual formation.
RESUMEN
The detrimental effects of high-level mercury exposure on the central nervous system as well as effects of low-level exposure during early development have been established. However, no previous studies have investigated the effects of mercury level on brain morphometry using advance imaging techniques in young adults. Here, utilizing hair analysis which has been advocated as a method for biological monitoring, data of regional gray matter volume (rGMV), regional white matter volume (rWMV), fractional anisotropy (FA) and mean diffusivity (MD), cognitive functions, and depression among 920 healthy young adults in Japan, we showed that greater hair mercury levels were weakly but significantly associated with diminished cognitive performance, particularly on tasks requiring rapid processing (speed measures), lower depressive tendency, lower rGMV in areas of the thalamus and hippocampus, lower rWMV in widespread areas, greater FA in bilaterally distributed white matter areas overlapping with areas of significant rWMV reductions and lower MD of the widely distributed gray and white matter areas particularly in the bilateral frontal lobe and the right basal ganglia. These results suggest that even normal mercury exposure levels in Japan are weakly associated with differences of brain structures and lower neurobehavioral performance and altered mood among young adults.
Asunto(s)
Mercurio , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Cabello , Humanos , Sustancia Blanca/diagnóstico por imagen , Adulto JovenRESUMEN
Self-reference effect (SRE) is defined as better recall or recognition performance when the materials that are memorized refer to the self. The SRE paradigm usually requires participants to explicitly refer items to themselves, but some researchers have found that the SRE also can occur for implicitly self-referenced items. Few studies though have investigated the effect of self-related stimuli without awareness. In this study, we presented self-related (participants' names) or other (other's names or nouns) stimuli for a very short time between masks and then explicitly presented subsequent trait adjectives to participants. Recognition performance showed no significant differences between the own-name and the other two conditions in Experiment 1 that had random-order conditions. On the other hand, the result of Experiment 2 that had block-order conditions and greater prime stimuli suggests that SRE can occur as a result of the instantaneous stimulus: Subjects who showed better memory performance also had relatively high recognition of the trait adjectives that they viewed after their instantaneously presented own-name. This effect would show that self-representation can be activated by self-related stimuli without awareness and that subsequent items are unconsciously referenced to that self-representation.
RESUMEN
Herein, we compared the connectivity of resting-state networks between participants with high and low working memory capacity groups. Brain network connectivity was assessed under both resting and working memory task conditions. Task scans comprised dual-task (reading sentences while memorizing target words) and single-task (reading sentences) conditions. The low capacity group showed relatively stronger connectivity during resting-state in most brain regions, and the high capacity group showed a stronger connectivity between the medial prefrontal and posterior parietal cortices. During task performance, the dorsal attention and salience networks were relatively strongly connected in the high capacity group. In the comparison between dual- and single-task conditions, increased coupling between the anterior cingulate cortex and other attentional control-related areas were noted in the high capacity group. These findings suggest that working memory differences are related with network connectivity variations in attentional control-associated regions during both resting and task performance conditions.
Asunto(s)
Encéfalo/fisiología , Conectoma , Memoria a Corto Plazo , Vías Nerviosas , Descanso , Atención , Mapeo Encefálico , Cognición , Humanos , Imagen por Resonancia Magnética/métodos , Desempeño PsicomotorRESUMEN
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an early onset and a strong genetic origin. Unaffected relatives may present similar but subthreshold characteristics of ASD. This broader autism phenotype is especially prevalent in the parents of individuals with ASD, suggesting that it has heritable factors. Although previous studies have demonstrated brain morphometry differences in ASD, they are poorly understood in parents of individuals with ASD. Here, we estimated grey matter volume in 45 mothers of children with ASD (mASD) and 46 age-, sex-, and handedness-matched controls using whole-brain voxel-based morphometry analysis. The mASD group had smaller grey matter volume in the right middle temporal gyrus, temporoparietal junction, cerebellum, and parahippocampal gyrus compared with the control group. Furthermore, we analysed the correlations of these brain volumes with ASD behavioural characteristics using autism spectrum quotient (AQ) and systemizing quotient (SQ) scores, which measure general autistic traits and the drive to systemize. Smaller volumes in the middle temporal gyrus and temporoparietal junction correlated with higher SQ scores, and smaller volumes in the cerebellum and parahippocampal gyrus correlated with higher AQ scores. Our findings suggest that atypical grey matter volumes in mASD may represent one of the neurostructural endophenotypes of ASD.
Asunto(s)
Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Endofenotipos , Sustancia Gris/diagnóstico por imagen , Madres , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Imagen por Resonancia MagnéticaRESUMEN
Autism spectrum disorder (ASD) often involves dysfunction in general motor control and motor coordination, in addition to core symptoms. However, the neural mechanisms underlying motor dysfunction in ASD are poorly understood. To elucidate this issue, we focused on brain oscillations and their coupling in the primary motor cortex (M1). We recorded magnetoencephalography in 18 children with ASD, aged 5 to 7 years, and 19 age- and IQ-matched typically-developing children while they pressed a button during a video-game-like motor task. The motor-related gamma (70 to 90 Hz) and pre-movement beta oscillations (15 to 25 Hz) were analyzed in the primary motor cortex using an inverse method. To determine the coupling between beta and gamma oscillations, we applied phase-amplitude coupling to calculate the statistical dependence between the amplitude of fast oscillations and the phase of slow oscillations. We observed a motor-related gamma increase and a pre-movement beta decrease in both groups. The ASD group exhibited a reduced motor-related gamma increase and enhanced pre-movement beta decrease in the ipsilateral primary motor cortex. We found phase-amplitude coupling, in which high-gamma activity was modulated by the beta rhythm in the primary motor cortex. Phase-amplitude coupling in the ipsilateral primary motor cortex was reduced in the ASD group compared with the control group. Using oscillatory changes and their couplings, linear discriminant analysis classified the ASD and control groups with high accuracy (area under the receiver operating characteristic curve: 97.1%). The current findings revealed alterations in oscillations and oscillatory coupling, reflecting the dysregulation of motor gating mechanisms in ASD. These results may be helpful for elucidating the neural mechanisms underlying motor dysfunction in ASD, suggesting the possibility of developing a biomarker for ASD diagnosis.
Asunto(s)
Trastorno del Espectro Autista , Corteza Motora , Ritmo beta , Encéfalo , Niño , Humanos , MagnetoencefalografíaRESUMEN
Measuring whole brain networks is a promising approach to extract features of autism spectrum disorder (ASD), a brain disorder of widespread regions. Objectives of this study were to evaluate properties of resting-state functional brain networks in children with and without ASD and to evaluate their relation with social impairment severity. Magnetoencephalographic (MEG) data were recorded for 21 children with ASD (7 girls, 60-89 months old) and for 25 typically developing (TD) control children (10 girls, 60-91 months old) in a resting state while gazing at a fixation cross. After signal sources were localized onto the Desikan-Killiany brain atlas, statistical relations between localized activities were found and evaluated in terms of the phase lag index. After brain networks were constructed and after matching with intelligence using a coarsened exact matching algorithm, ASD and TD graph theoretical measures were compared. We measured autism symptoms severity using the Social Responsiveness Scale and investigated its relation with altered small-worldness using linear regression models. Children with ASD were found to have significantly lower small-worldness in the beta band (p = 0.007) than TD children had. Lower small-worldness in the beta band of children with ASD was associated with higher Social Responsiveness Scale total t-scores (p = 0.047). Significant relations were also inferred for the Social Awareness (p = 0.008) and Social Cognition (p = 0.015) sub-scales. Results obtained using graph theory demonstrate a difference between children with and without ASD in MEG-derived resting-state functional brain networks, and the relation of that difference with social impairment. Combining graph theory and MEG might be a promising approach to establish a biological marker for ASD.
RESUMEN
Many individuals with autism spectrum disorders have comorbid epilepsy. Even in the absence of observable seizures, interictal epileptiform discharges are common in individuals with autism spectrum disorders. However, how these interictal epileptiform discharges are related to autistic symptomatology remains unclear. This study used magnetoencephalography to investigate the relation between interictal epileptiform discharges and altered functional brain networks in children with autism spectrum disorders. Instead of particularly addressing individual brain regions, we specifically examine network properties. For this case-control study, we analysed 70 children with autism spectrum disorders (52 boys, 18 girls, 38-92 months old) and 19 typically developing children (16 boys, 3 girls, 48-88 months old). After assessing the participants' social reciprocity using the Social Responsiveness Scale, we constructed graphs of functional brain networks from frequency band separated task-free magnetoencephalography recordings. Nodes corresponded to Desikan-Killiany atlas-based 68 brain regions. Edges corresponded to phase lag index values between pairs of brain regions. To elucidate the effects of the existence of interictal epileptiform discharges on graph metrics, we matched each of three pairs from three groups (typically developing children, children with autism spectrum disorders who had interictal epileptiform discharges and those who did not) in terms of age and sex. We used a coarsened exact matching algorithm and applied adjusted regression analysis. We also investigated the relation between social reciprocity and the graph metric. Results show that, in children with autism spectrum disorders, the average clustering coefficient in the theta band was significantly higher in children who had interictal epileptiform discharges. Moreover, children with autism spectrum disorders who had no interictal epileptiform discharges had a significantly lower average clustering coefficient in the theta band than typically developing children had. However, the difference between typically developing children and children with autism spectrum disorder who had interictal epileptiform discharges was not significant. Furthermore, the higher average clustering coefficient in the theta band corresponded to severe autistic symptoms in children with autism spectrum disorder who had interictal epileptiform discharges. However, the association was not significant in children with autism spectrum disorders who had no interictal epileptiform discharge. In conclusion, results demonstrate that alteration of functional brain networks in children with autism spectrum disorders depends on the existence of interictal epileptiform discharges. Interictal epileptiform discharges might 'normalize' the deviation of altered brain networks in autism spectrum disorders, increasing the clustering coefficient. However, when the effect exceeds tolerance, it actually exacerbates autistic symptoms.
RESUMEN
The self-reference effect (SRE) is defined as better recall or recognition performance when the memorized materials refer to the self. Recently, a number of neuroimaging studies using self-referential and other-referential tasks have reported that self- and other-referential judgments basically show greater activation in common brain regions, specifically in the medial prefrontal cortex (MPFC) when compared with nonmentalizing judgments, but that a ventral-to-dorsal gradient in MPFC emerges from a direct comparison between self- and other-judgments. However, most of these previous studies could not provide an adequate explanation for the neural basis of SRE because they did not directly compare brain activation for recognition/recall of the words referenced to the self with another person. Here, we used an event-related functional magnetic resonance imaging (fMRI) that measured brain activity during processing of references to the self and another, and for recognition of self and other referenced words. Results from the fMRI evaluation task indicated greater activation in ventromedial prefrontal cortex (VMPFC) in the self-referential condition. While in the recognition task, VMPFC, posterior cingulate cortex (PCC) and bilateral angular gyrus (AG) showed greater activation when participants correctly recognized self-referenced words versus other-referenced words. These data provide evidence that the self-referenced words evoked greater activation in the self-related region (VMPFC) and memory-related regions (PCC and AG) relative to another person in the retrieval phase, and that the words remained as a stronger memory trace that supports recognition.
RESUMEN
Neuroimaging and behavioral evidence has suggested that the lateral prefrontal cortex is involved in individual differences in working memory capacity (WMC). However, few studies have localized the neural structures that differentiate high and low WMC individuals, considering the functional architecture of the prefrontal cortex. The present study aimed to identify a frontal region that underlies individual differences from the perspective of the hierarchical architecture of the frontal cortex. By manipulating an episodic factor of cognitive control (control in selecting an appropriate task set according to a temporal context) and using a parametric modulation analysis, we found that both high- and low- WMC individuals have similar activation patterns in the premotor cortex (BA6, 8), caudal prefrontal cortex (BA44, 45), and frontopolar cortex (BA10, 11), but differed in the rostral part of the prefrontal cortex (BA46/47); high WMC individuals showed greater activation in the higher episodic control condition, whereas low WMC individuals showed reduced activation when episodic control was required. Similar patterns of activation were found in the right inferior parietal and middle/inferior temporal cortices. These results indicate that the rostral prefrontal cortex, which supports episodic cognitive control, possibly by sending a weighting signal toward the inferior parietal and middle/inferior temporal cortices that modulate saliency and sensory processing, underlies individual differences in WMC. Episodic control account, which considers the organization of the prefrontal cortex, fits well with previous findings of individual differences in WMC.