Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Appl Toxicol ; 43(7): 982-992, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36647207

RESUMEN

Plasticizer pollution of the water environment is one of the world's most serious environmental issues. Phthalate plasticizers can disrupt endocrine function in vertebrates. Therefore, this study analyzed thyroid-related, reproduction-related, and estrogen-responsive genes in Japanese medaka (Oryzias latipes) to determine whether non-phthalate diisobutyl adipate (DIBA) plasticizer could affect endocrine hormone activity or not. Developmental toxicity during fish embryogenesis was also evaluated. At a concentration of 11.57 mg/l, embryonic exposure to DIBA increased the mortality rate. Although abnormal development, including body curvature, edema, and lack of swim bladder inflation, was observed at 3.54 and 11.57 mg/l DIBA, growth inhibition and reduced swimming performance were also observed. In addition, DIBA exposure increased the levels of thyroid-stimulating hormone beta-subunit (tshß) and deiodinase 1 (dio1) but decreased the levels of thyroid hormone receptor alpha (trα) and beta (trß). These results suggest that DIBA has thyroid hormone-disrupting activities in fish. However, kisspeptin (kiss1 and kiss2), gonadotropin-releasing hormone (gnrh1), follicle-stimulating hormone beta (fshß), luteinizing hormone beta (lhß), choriogenin H (chgH), and vitellogenin (vtg1) expression did not change dose-dependently in response to DIBA exposure, whereas gnrh2 and vtg2 expression was elevated. These results indicate that DIBA has low estrogenic activity and does not disrupt the endocrine reproduction system in fish. Overall, this is the first report indicating that non-phthalate DIBA plasticizer is embryotoxic and disrupt thyroid hormone activity in fish.


Asunto(s)
Oryzias , Contaminantes Químicos del Agua , Animales , Plastificantes/toxicidad , Plastificantes/metabolismo , Oryzias/metabolismo , Sistema Endocrino , Estrógenos/toxicidad , Adipatos/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
2.
Glob Chang Biol ; 25(12): 4022-4033, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31436851

RESUMEN

Due to extremely high rates of evaporation and low precipitation in the Persian Gulf, discharges from desalination plants (DPs) can lead to ecological stresses by increasing water temperatures, salinities, and heavy metal concentrations, as well as decreasing dissolved oxygen levels. We discuss the potential ecological impacts of DPs on marine organisms and propose mitigating measures to reduce the problems induced by DPs discharges. The daily capacity of DPs in the Persian Gulf exceeds 11 million m3 per day, which is approximately half of global daily freshwater production; multistage flash distillation (MSF) is the dominant desalination process. Results from field and laboratory studies indicate that there are potentially serious and chronic threats to marine communities following exposure to DP discharges, especially within the zoobenthos, echinodermata, seagrasses, and coral reefs. DP discharges can lead to decreases in sensitive species, plankton abundance, hard substrate epifauna, and growth rates of seagrasses. However, the broad applicability of any one of these impacts is currently hard to scale because of the limited number of studies that have been conducted to assess the ecological impacts of DP discharge on Persian Gulf organisms. Even so, available data suggest that appropriately sited, designed, and operated DPs combined with current developments in impingement and entrainment reduction technology can mitigate many of the negative environmental impacts of DPs.


Asunto(s)
Antozoos , Arrecifes de Coral , Biodiversidad , Ecología , Océano Índico , Salinidad
3.
Environ Res ; 151: 313-320, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27522569

RESUMEN

Influence of waterborne butachlor (BUC), a commonly used pesticide, on morphometric, biochemical, and molecular biomarkers was evaluated in juvenile, full sibling, diploid and triploid African catfish (Clarias gariepinus). Fish were exposed for 21 days to one of three concentrations of BUC [mean measured µg/L: 22, 44 or 60]. Unexposed (control) triploids were heavier and longer and had higher visceral-somatic index (VSI) than diploids. Also, they had lighter liver weight (HSI) and showed lower transcript levels of brain gonadotropin-releasing hormone (GnRH), aromatase (cyp191b) and fushi tarazu-factor (ftz-f1), and plasma testosterone levels than diploids. Butachlor treatments had no effects, in either diploid or triploid fish, on VSI, HSI, weight or length changes, condition factor (CF), levels of plasma testosterone, 17-ß estradiol (E2), cortisol, cholesterol, or mRNA levels of brain tryptophan hydroxylase (tph2), forkhead box L2 (foxl2), and 11 ß-hydroxysteroid dehydrogenase type 2 (11ß-hsd2). Expressions of cyp191b and ftz-f1 in triploids were upregulated by the two highest concentrations of BUC. In diploid fish, however, exposures to all BUC concentrations decreased GnRH transcription and the medium BUC concentration decreased ftz-f1 transcription. Substantial differences between ploidies in basal biomarker responses are consistent with the reported impaired reproductive axis in triploid C. gariepinus. Furthermore, the present study showed the low impact of short term exposure to BUC on reproductive axis in C. gariepinus.


Asunto(s)
Acetanilidas/toxicidad , Biomarcadores/sangre , Bagres , Animales , Diploidia , Femenino , Masculino , Triploidía
4.
Environ Monit Assess ; 188(1): 40, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26687083

RESUMEN

Centella asiatica is a commonly used medicinal plant in Malaysia. As heavy metal accumulation in medicinal plants which are highly consumed by human is a serious issue, thus the assessment of heavy metals in C. asiatica is important for the safety of consumers. In this study, the heavy metal accumulation in C. asiatica and the potential health risks were investigated. Samples of C. asiatica and surface soils were collected from nine different sites around Peninsular Malaysia. The concentration of six heavy metals namely Cd, Cu, Ni, Fe, Pb and Zn were determined by air-acetylene flame atomic absorption spectrophotometer (AAS). The degree of anthropogenic influence was assessed by calculating the enrichment factor (EF) and index of geoaccumulation (Igeo). The heavy metal uptake into the plant was estimated through the calculation of translocation factor (TF), bioconcentration factor (BCF) and correlation study. Estimated daily intakes (EDI) and target hazard quotients (THQ) were used to determine the potential health risk of consuming C. asiatica. The results showed that the overall surface soil was polluted by Cd, Cu and Pb, while the uptake of Zn and Ni by the plants was high. The value of EDI and THQ showed that the potential of Pb toxicity in C. asiatica was high as well. As heavy metal accumulation was confirmed in C. asiatica, daily consumption of the plant derived from polluted sites in Malaysia was not recommended.


Asunto(s)
Centella/química , Monitoreo del Ambiente , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Contaminación Ambiental/estadística & datos numéricos , Humanos , Malasia , Riesgo , Suelo
5.
Environ Monit Assess ; 187(9): 584, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26298187

RESUMEN

Fish tilapia Oreochromis mossambicus were collected from a contaminated Seri Serdang (SS) pond potentially receiving domestic effluents and an uncontaminated pond from Universiti Putra Malaysia (UPM). The fish were dissected into four parts namely gills, muscles, intestines, and liver. All the fish parts were pooled and analyzed for the concentrations of Cd, Cu, Fe, Ni, Pb, and Zn. Generally, the concentrations of all metals were low in the edible muscle in comparison to the other parts of the fish. It was found that the levels of all the heavy metals in the different parts of fish collected from the SS were significantly (P<0.05) higher than those from UPM, indicating greater metal bioavailabilities in the SS pond. The sediment data also showed a similar pattern with significantly (P<0.05) higher metal concentrations in SS than in UPM, indicating higher metal contamination in SS. Potential health risk assessments based on provisional tolerable weekly intake (PTWI) and the amount of fish required to reach the PTWI values, estimated daily intake (EDI), and target hazard quotient (THQ) indicated that health risks associated with heavy metal exposure via consumption of the fish's muscles were insignificant to human. Therefore, the consumption of the edible muscles of tilapia from both ponds should pose no toxicological risk of heavy metals since their levels are also below the recommended safety guidelines. While it is advisable to discard the livers, gills, and intestines of the two tilapia fish populations before consumption, there were no potential human health risks of heavy metals to the consumers on the fish muscle part.


Asunto(s)
Contaminación de Alimentos/análisis , Metales Pesados/análisis , Tilapia , Contaminantes Químicos del Agua/análisis , Adulto , Animales , Niño , Ingestión de Alimentos , Monitoreo del Ambiente , Branquias/química , Humanos , Intestinos/química , Hígado/química , Malasia , Músculos/química , Estanques , Medición de Riesgo
6.
Foods ; 13(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38201178

RESUMEN

With the expected colonization of human daily life by artificial intelligence, including in industry productivity, the deployment of Industry 4.0 (I4) in the food agriculture industry (FAI) is expected to revolutionize and galvanize food production to increase the efficiency of the industry's production and to match, in tandem, a country's gross domestic productivity. Based on a literature review, there have been almost no direct relationships between the I4-Food-Agriculture (I4FA) Nexus and the agroecosystem. This study aimed to evaluate the state-of-the-art relationships between the I4FA Nexus and the agroecosystem and to discuss the challenges in the sustainable FAI that can be assisted by the I4 technologies. This objective was fulfilled by (a) reviewing all the relevant publications and (b) drawing a conceptual relationship between the I4FA Nexus and the agroecosystem, in which the I4FA Nexus is categorized into socio-economic and environmental (SEE) perspectives. Four points are highlighted in the present review. First, I4 technology is projected to grow in the agricultural and food sectors today and in the future. Second, food agriculture output may benefit from I4 by considering the SEE benefits. Third, implementing I4 is a challenging journey for the sustainable FAI, especially for the small to medium enterprises (SMEs). Fourth, environmental, social, and governance (ESG) principles can help to manage I4's implementation in agriculture and food. The advantages of I4 deployment include (a) social benefits like increased occupational safety, workers' health, and food quality, security, and safety; (b) economic benefits, like using sensors to reduce agricultural food production costs, and the food supply chain; and (c) environmental benefits like reducing chemical leaching and fertilizer use. However, more studies are needed to address social adaptability, trust, privacy, and economic income uncertainty, especially in SMEs or in businesses or nations with lower resources; this will require time for adaptation to make the transition away from human ecology. For agriculture to be ESG-sustainable, the deployment of I4FA could be an answer with the support of an open-minded dialogue platform with ESG-minded leaders to complement sustainable agroecosystems on a global scale.

7.
Aquat Toxicol ; 273: 107007, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38943866

RESUMEN

Phenytoin, an antiepileptic drug, induces neurotoxicity and abnormal embryonic development and reduces spontaneous locomotor activity in fish. However, its effects on other endpoints remain unclear. Therefore, we investigated the effects of phenytoin on the swimming behavior and reproductive ability of Japanese medaka. Abnormalities in swimming behavior, such as imbalance, rotation, rollover, and vertical swimming, were observed. However, when phenytoin exposure was discontinued, the behavioral abnormality rates decreased. Phenytoin exposure also significantly reduced reproductive ability. By investigating reproduction-related gene expression of gnrh1, gnrh2, fshb, and lhb remained unchanged in males and females. In contrast, kiss1 expression was significantly suppressed due to phenytoin exposure in males and females. kiss2 expression was also significantly suppressed in females but not in males. We filmed videos to examine phenytoin exposure effects on sexual behavior. Females showed no interest in the male's courtship. As the kisspeptin 1 system controls sexual behavior in Japanese medaka, phenytoin exposure may have decreased kiss1 expression, which decreased female reproductive motivation; hence, they did not spawn eggs. This is the first study to show that phenytoin exposure induces behavioral abnormalities, and suppresses kiss1 expression and reproductive performance in Japanese medaka.


Asunto(s)
Kisspeptinas , Oryzias , Fenitoína , Reproducción , Contaminantes Químicos del Agua , Animales , Oryzias/genética , Oryzias/fisiología , Kisspeptinas/genética , Fenitoína/toxicidad , Masculino , Femenino , Reproducción/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Conducta Animal/efectos de los fármacos , Conducta Sexual Animal/efectos de los fármacos , Natación , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-38218565

RESUMEN

Phthalate and non-phthalate plasticizers are used in polymer materials, such as plastic and rubber. It has recently been found that diisobutyl adipate (DIBA), which is considered an environmentally safe non-phthalate plasticizer, potentially acts as a thyroid disruptor in fish. Here, we investigated the sexual hormone effects of DIBA based on the expression levels of genes that respond to endocrine disruption and sexual hormone activity in the livers and gonads, and on gonadal sexual differentiation in Japanese medaka. Compared with the control group, the mRNA expression of chgH, vtg1, vtg2, and esr1 was significantly suppressed in the livers of DIBA exposed XX individuals. Furthermore, the mRNA expression of gsdf was significantly upregulated and downregulated in the gonads of XX and XY individuals, respectively. The mRNA expressions of esr1 and esr2b were significantly suppressed by DIBA exposure in the gonads of both XX and XY individuals. These observations suggest that DIBA has potential androgenic activity in Japanese medaka. However, normal testes and ovaries were observed in respective XY and XX medaka after DIBA exposure; therefore, these results suggest that DIBA may have weak androgenic activity.


Asunto(s)
Oryzias , Animales , Oryzias/genética , Oryzias/metabolismo , Diferenciación Sexual , Gónadas , Biomarcadores/metabolismo , Hormonas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adipatos/metabolismo , Adipatos/farmacología
9.
Biochem Genet ; 51(9-10): 789-99, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23846110

RESUMEN

Suspicious hybrids of painted storks and milky storks were found in a Malaysian zoo. Blood of these birds was sampled on FTA cards for DNA fingerprinting. Of 44 optimized primers, 6 produced diagnostic markers that could identify hybrids. The markers were based on simple, direct PCR-generated multilocus banding patterns that provided two sets of genetic data, one for each of the two stork species and another for the hybrids. It also revealed that large DNA fragments (3,000 bp) could be amplified from blood collected on FTA cards. When the results of each individual bird's DNA fingerprint were compared with plumage characters, the hybrids were found to express a range of intermediate phenotypic traits of the pure breeds with no dominant plumage characteristic from either parental species.


Asunto(s)
Aves/clasificación , Aves/genética , Animales , Aves/anatomía & histología , Dermatoglifia del ADN , Cartilla de ADN , Pruebas con Sangre Seca , Marcadores Genéticos , Hibridación Genética , Repeticiones de Microsatélite , Fenotipo , Reacción en Cadena de la Polimerasa
11.
Biology (Basel) ; 12(4)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37106725

RESUMEN

The present study aimed to confirm the use of the byssus (BYS) of the green-lipped mussel Perna viridis as a biomonitoring biopolymer for zinc (Zn) by comparing it to copper (Cu) and cadmium (Cd) pollution in coastal waters under experimental field conditions, based on the transplantation of caged mussels between polluted and unpolluted sites in the Straits of Johore (SOJ). Four important evidential points were found in the present study. First, the 34 field-collected populations with BYS/total soft tissue (TST) ratios > 1 indicated that the BYS was a more sensitive, concentrative, and accumulative biopolymer for the three metals than TST. Significant (p < 0.05) and positive correlations between BYS and TST in terms of the levels of the three metals were observed. Second, the data obtained in the present study were well-supported by the interspecific comparison, which indicated that the BYS of P. viridis was a significantly better biomonitoring biopolymer for the identification of coastal areas exposed to Zn, Cd, and Cu pollution and played the role of an excretion route of metal wastes. Third, the higher positive correlation coefficients for the metals between the BYS sedimentary geochemical fractions than the TST sedimentary geochemical fractions indicated that the BYS was more reflective of metal bioavailability and contamination in coastal waters. Fourth, and most importantly, the field-based cage transplantation study clearly indicated the accumulation and elimination of the three metals by the BYS in both polluted and unpolluted sites in the Straits of Johore. In sum, the BYS of P. viridis was confirmed as a better biopolymer than TST for Zn, as well as Cd and Cu, bioavailability and contamination in tropical coastal waters.

12.
Foods ; 12(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37107369

RESUMEN

The present study aimed to assess the human health risks of six potentially toxic metals (PTMs) (Cd, Cu, Fe, Ni, Pb and Zn) in 21 populations of popular mangrove snails, Cerithidea obtusa, collected from Malaysia. In general, the concentrations (mg/kg wet weight) of Cd (0.03-2.32), Cu (11.4-35.2), Fe (40.9-759), Ni (0.40-6.14), Pb (0.90-13.4) and Zn (3.11-129) found in the snails in all populations were lower than the prescribed maximum permissible limits (MPL)s for Cd, Cu, Ni, Pb and Zn. However, in the investigated snail populations, Cd (14%), Pb (62%), Cu (19%), and Zn (10%) were found in exceedance of the MPL of the respective metal. The target hazard quotient (THQ) values in all populations for Cu, Ni, Fe and Zn were all found to be below 1.00. However, for the THQ values of Cd and Pb, two populations exceeded 1.00, while others were below the threshold level. The estimated weekly intake (EWI) of all six metals for all populations was only 0.03-4.65% of the provisional tolerable weekly intake. This conclusively indicates that, based on the EWI, there are no health risks of the six PTMs in the consumption of snails from Malaysia since the assessments are dependent on the consumers' body weight and consumption rate. Nonetheless, the present results indicate that the amounts of snails consumed should be limited to minimize the potential health risks of PTMs to consumers. The relatively low and weak but positive correlations of Cu, Ni, Pb and Zn between C. obtusa and their habitat sediments indicate that C. obtusa can be a potential biomonitor for Cu, Ni, Pb and Zn. This is important for effective mangrove management from the perspective of the sustainable resources from the intertidal mangrove environment. Hence, the biomonitoring-health risk nexus of PTMs in mangrove snails is proposed in the present study.

13.
Foods ; 12(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37107497

RESUMEN

This paper aims to review the literature on 'Effective Microorganism (EM)' and 'Fertilizer' from the Scopus database and to discuss EMs using Halal-based sources for biofertilizer production from socio economic insights. Based on EM and fertilizer publications on the Scopus database, all the 17 papers reviewed provided no detailed information on the Halal-status of the biofertilizers inoculated with EM. The impacts of Halal-certified biofertilizers will trigger the Halal certification in food products by (a) catering for the increasing Halal food demand due to expectedly Muslim population expansion, (b) contributing to the sustainable buying behaviour of Halal products' consumers in the future, (c) catering for the increasing number of Muslim travellers around the world, (d) becoming a positive driver for higher production of more Halal foods that can enhance food safety, human health and well-being, and (e) creating a cost-effective and increasing food marketability. The later three points (c, d and e) play a very important role in a country's societal well-being and economic growth and development. Although Halal-status is not a must for the world's food marketing, Halal-certified biofertilizer for the Halal-status of food carries the greatest potential to enter the ever-expanding Muslim markets. Finally, it is postulated that the successful usage of EM using Halal-based sources for biofertilizer production will result in two major outcomes from the points of United Nations' Sustainable Development Goals # 9 (Industry, Innovation and Infrastructure) and # 12 (Responsible Consumption and Production). Hence, the presented review provides a starting point for future research considering sustainability and innovation as priorities.

14.
Artículo en Inglés | MEDLINE | ID: mdl-37075951

RESUMEN

Pyriproxyfen is an agricultural chemical pesticide that has been detected in the aquatic environment. This study aimed to clarify the effects of pyriproxyfen on the growth as well as thyroid hormone- and growth-related gene expression of zebrafish (Danio rerio) during its early life stage. Pyriproxyfen exhibited a lethal effect in a concentration-dependent manner: the lowest and no effect concentrations were 250.7 and 111.7 µg/L, respectively. These concentrations were considerably higher than the residual environmental concentrations, indicating the low risk of this pesticide when present at such concentrations. In the zebrafish group treated with 56.6 µg/L pyriproxyfen, thyroid hormone receptor ß gene expression levels remained unchanged, whereas thyroid-stimulating hormone ß subunit, iodtyronin deiodinase 2, and thyroid hormone receptor α gene expression levels significantly decreased compared with the control group expression levels. In zebrafish treated with 111.7 or 250.7 µg/L pyriproxyfen, iodtyronin deiodinase 1 gene expression levels significantly increased. These results indicate that pyriproxyfen disrupts thyroid hormone activity in zebrafish. Furthermore, pyriproxyfen exposure inhibited zebrafish growth; consequently, we examined the expression of growth hormone (gh) and insulin-like growth factor-I (igf-1), which are important for growth. Pyriproxyfen exposure suppressed gh expression; however, the igf-1 expression levels remained unchanged. Therefore, growth inhibition due to pyriproxyfen exposure was attributed to the suppression of gh expression.


Asunto(s)
Plaguicidas , Pez Cebra , Animales , Pez Cebra/metabolismo , Yoduro Peroxidasa/genética , Hormonas Tiroideas/metabolismo , Hormona del Crecimiento/genética , Hormona del Crecimiento/metabolismo , Expresión Génica
15.
Foods ; 12(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37238781

RESUMEN

The present field-based study aimed to determine the levels of six potentially toxic metals (PTM)s (Cd, Cu, Fe, Ni, Pb, and Zn determined using a flame atomic-absorption spectrophotometer) using transplanted green-lipped mussel Perna viridis from a polluted site at Kampung Pasir Puteh (KPP) to unpolluted sites at Kampung Sungai Melayu (KSM) and Sungai Belungkor (SB) in the Johore Straits (SOJ), and to estimate the human health risks of the PTMs after the depuration periods. Interestingly, after 10 weeks of depuration in the two unpolluted sites, there were 55.6-88.4% and 51.3-91.7% reductions of the six PTMs after transplantation from KPP to SB and KSM, respectively. Lower risks of health assessments were recorded and judged on the present findings of significantly (p < 0.05) lower levels of safety guidelines, significantly (p < 0.05) lower values of target hazard quotient, and significantly (p < 0.05) lower values of estimated weekly intake, of all the six PTMs after 10 weeks of depuration of the transplanted polluted mussels to the two unpolluted sites in the SOJ. Thus, further reducing the noncarcinogenic risks of the PTMs to the consumers. From an aquacultural point of view, this depuration technique can be recommended to reduce the health risks of PTMs to mussel consumers.

16.
MethodsX ; 11: 102281, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37519950

RESUMEN

The primary objective of the study was to examine the distribution of various elements, namely Cadmium (Cd), Copper (Cu), Iron (Fe), Nickel (Ni), and Lead (Pb), in the soft tissues, shells, and associated surface sediments of Cerithidea obtusa (C. obtusa) mangrove snails collected from Sungai Besar Sepang. To conduct the analysis, the preferred and most convenient methods employed were Instrumental Neutron Activation Analysis (INAA) and Atomic absorption spectrometry (AAS). The results showed that the mean concentration of elements in the sediments and soft tissues followed the order Fe > Cu > Ni > Pb > Cd, while for the shell of C. obtusa, it was Fe > Ni > Cu > Pb > Cd.•Iron (Fe) showed the highest concentration among all elements monitored in sediments, soft tissues, and shells of C. obtusa.•The PF results indicated higher incorporation of Pb and Ni into shells.•BSAF results showed that C. obtusa shells accumulated more Cu and Cd from sediments, making them effective biomonitors.

17.
J Xenobiot ; 13(4): 685-703, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37987445

RESUMEN

The abundance, distribution, and composition of microparticles (MPs) in the sea-surface microlayer (S-SML, less than 100 µm of sea surface in this experiment) and in bulk water (1 m under the sea surface) were investigated to evaluate the pollution level of MPs in Osaka Bay in Japan. Both seawater fractions were collected at eight sites including ship navigation routes, the coastal area, and the center of Osaka Bay for 2021-2023. MPs were filtered for four size ranges (10-53, 53-125, 125-500, and >500 µm) and then digested with H2O2. MPs' abundance was microscopically assessed; and polymer types of MPs were identified by a Fourier transform infrared spectrometer (FTIR). For the 22 collections performed along eight sites, the average MPs' abundance was 903 ± 921 items/kg for S-SML, while for the 25 collections performed along the same sites, the average MPs' abundance was 55.9 ± 40.4 items/kg for bulk water, respectively. MPs in both S-SML and bulk water exhibited their highest abundance along the navigation routes. The smallest MPs (10-53 µm) accounted for 81.2% and for 62.2% of all MPs in S-SML and in bulk water among all sites, respectively. Polymethyl methacrylate (PMMA) was the major type of MPs identified while minor ones were polyethylene, polyesters, polystyrene, polypropylene, polyvinyl chloride, polyamide, etc. PMMA comprised 95.1% of total MPs in S-SML and 45.6% of total MPs in bulk water. In addition, PMMA accounted for 96.6% in S-SML and 49.5% in bulk water for the smallest MP category (10-53 µm). It can be assumed that the MP sources were marine paints-primarily APPs (antifouling paint particles)-as well as land coatings. Sea pollution due to microparticles from ship vessels should be given proper attention.

18.
Artículo en Inglés | MEDLINE | ID: mdl-36470400

RESUMEN

Water pollution due to plasticizers is one of the most severe environmental problems worldwide. Phthalate plasticizers can act as endocrine disruptors in vertebrates. In this study, we investigated whether the non-phthalate bis(2-ethylhexyl) sebacate (DEHS) plasticizer can act as an endocrine disruptor by evaluating changes in the expression levels of thyroid hormone-related, reproduction-related, and estrogen-responsive genes of Japanese medaka (Oryzias latipes) exposed to the plasticizer. Following the exposure, the gene expression levels of thyroid-stimulating hormone subunit beta (tshß), deiodinase 1 (dio1), and thyroid hormone receptor alpha (trα) did not change. Meanwhile, DEHS suppressed dio2 expression, did not induce swim bladder inflation, and eventually reduced the swimming performance of Japanese medaka. These findings indicate that DEHS can potentially disrupt the thyroid hormone-related gene expression and metabolism of these fish. However, exposure to DEHS did not induce changes in the gene expression levels of kisspeptin 1 (kiss1), gonadotropin-releasing hormone (gnrh), follicle-stimulating hormone beta (fshß), luteinizing hormone beta (lhß), choriogenin H (chgH), and vitellogenin (vtg) in a dose-dependent manner. This is the first report providing evidence that DEHS can disrupt thyroid hormone-related metabolism in fish.


Asunto(s)
Oryzias , Plastificantes , Animales , Plastificantes/toxicidad , Oryzias/genética , Oryzias/metabolismo , Sistema Endocrino , Reproducción
20.
Biology (Basel) ; 12(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36671736

RESUMEN

This study aimed to evaluate the ecological-health risks of potentially toxic metals in the surface sediments on the Klang mangrove ecosystem and assessed the phytoremediation potential of Avicennia officinalis collected from the area. The results showed that the concentrations (mg/kg dry weight) of Cu, Ni, Pb and Zn in the surface sediments ranged between 5.30−63.8, 14.2−32.7, 30.3−62.3, and 46.4−269, respectively. The ecological risk values of the surface sediments indicated that Ni, Pb and Zn were all classified as 'low potential ecological risk', while the Cu ecological risk ranged between 'low potential ecological risk' and 'considerable potential ecological risk'. For the health risks on the sediments, all of the values of hazard index for Cu, Ni, Pb and Zn, based on a combination of three pathways, indicated < 1.00, showing that the four metals are non-carcinogenic. Based on the bioconcentration factor values, it can be concluded that the lamina has better potential as a phytoremediator of essential Cu, Zn and Fe. In contrast, midrib plus petiole has better potential as a phytoremediator of non-essential Pb and Ni. To mitigate the threats to the Klang mangrove ecosystem, the information offered in the present study can be employed in the monitoring and provision of the ecological-health risks of potentially toxic metals in the Klang mangrove ecosystem. Hence, the present findings can be employed for developing a water-energy-food framework for managing the Klang mangrove ecosystem.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda