Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nanotechnology ; 35(39)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38959870

RESUMEN

Electron beam lithography (EBL) stands out as a powerful direct-write tool offering nanometer-scale patterning capability and is especially useful in low-volume R&D prototyping when coupled with pattern transfer approaches like etching or lift-off. Among pattern transfer approaches, lift-off is preferred particularly in research settings, as it is cost-effective and safe and does not require tailored wet/dry etch chemistries, fume hoods, and/or complex dry etch tools; all-in-all offering convenient, 'undercut-free' pattern transfer rendering it useful, especially for metallic layers and unique alloys with unknown etchant compatibility or low etch selectivity. Despite the widespread use of the lift-off technique and optical/EBL for micron to even sub-micron scales, existing reports in the literature on nanofabrication of metallic structures with critical dimension in the 10-20 nm regime with lift-off-based EBL patterning are either scattered, incomplete, or vary significantly in terms of experimental conditions, which calls for systematic process optimization. To address this issue, beyond what can be found in a typical photoresist datasheet, this paper reports a comprehensive study to calibrate EBL patterning of sub-50 nm metallic nanostructures including gold nanowires and nanogaps based on a lift-off process using bilayer polymethyl-methacrylate as the resist stack. The governing parameters in EBL, including exposure dose, soft-bake temperature, development time, developer solution, substrate type, and proximity effect are experimentally studied through more than 200 EBL runs, and optimal process conditions are determined by field emission scanning electron microscope imaging of the fabricated nanostructures reaching as small as 11 nm feature size.

2.
Sens Actuators A Phys ; 349: 114058, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36447633

RESUMEN

Stimulated by the COVID-19 outbreak, the global healthcare industry better acknowledges the necessity of innovating novel methods for remote healthcare monitoring and treating patients outside clinics. Here we report the development of two different types of graphene textile electrodes differentiated by the employed fabrication techniques (i.e., dip-coating and spray printing) and successful demonstration of ergonomic and truly wearable, single-arm diagnostic electrocardiography (SADE) using only 3 electrodes positioned on only 1 arm. The performance of the printed graphene e-textile wearable systems were benchmarked against the "gold standard" silver/silver chloride (Ag/AgCl) "wet" electrodes; achieving excellent correlation up to ∼ 96% and ∼ 98% in ECG recordings (15 s duration) acquired with graphene textiles fabricated by dip-coating and spray printing techniques, respectively. In addition, we successfully implemented automatic detection of heartrate of 8 volunteers (mean value: 74.4 bpm) during 5 min of static and dynamic daily activities and benchmarked their recordings with a standard fingertip photoplethysmography (PPG) device. Heart rate variability (HRV) was calculated, and the root means successive square difference (rMMSD) metric was 30 ms during 5 min of recording. Other cardiac parameters such as R-R interval, QRS complex duration, S-T segment duration, and T-wave duration were also detected and compared to typical chest ECG values.

3.
Sensors (Basel) ; 23(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37112340

RESUMEN

RF-MEMS technology has evolved significantly over the years, during which various attempts have been made to tailor such devices for extreme performance by leveraging novel designs and fabrication processes, as well as integrating unique materials; however, their design optimization aspect has remained less explored. In this work, we report a computationally efficient generic design optimization methodology for RF-MEMS passive devices based on multi-objective heuristic optimization techniques, which, to the best of our knowledge, stands out as the first approach offering applicability to different RF-MEMS passives, as opposed to being customized for a single, specific component. In order to comprehensively optimize the design, both electrical and mechanical aspects of RF-MEMS device design are modeled carefully, using coupled finite element analysis (FEA). The proposed approach first generates a dataset, efficiently spanning the entire design space, based on FEA models. By coupling this dataset with machine-learning-based regression tools, we then generate surrogate models describing the output behavior of an RF-MEMS device for a given set of input variables. Finally, the developed surrogate models are subjected to a genetic algorithm-based optimizer, in order to extract the optimized device parameters. The proposed approach is validated for two case studies including RF-MEMS inductors and electrostatic switches, in which the multiple design objectives are optimized simultaneously. Moreover, the degree of conflict among various design objectives of the selected devices is studied, and corresponding sets of optimal trade-offs (pareto fronts) are extracted successfully.

4.
Biophys J ; 121(15): 2981-2993, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35754183

RESUMEN

When lipid membranes curve or are subjected to strong shear forces, the two apposed leaflets of the bilayer slide past each other. The drag that one leaflet creates on the other is quantified by the coefficient of interleaflet friction, b. Existing measurements of this coefficient range over several orders of magnitude, so we used a recently developed microfluidic technique to measure it systematically in supported lipid membranes. Fluid shear stress was used to force the top leaflet of a supported membrane to slide over the stationary lower leaflet. Here, we show that this technique yields a reproducible measurement of the friction coefficient and is sensitive enough to detect differences in friction between membranes made from saturated and unsaturated lipids. Adding cholesterol to saturated and unsaturated membranes increased interleaflet friction significantly. We also discovered that fluid shear stress can reversibly induce gel phase in supported lipid bilayers that are close to the gel-transition temperature.


Asunto(s)
Colesterol , Membrana Dobles de Lípidos , Fricción , Estrés Mecánico
5.
Sensors (Basel) ; 19(16)2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31412582

RESUMEN

On-chip transformers are considered to be the primary components in many RF wireless applications. This paper provides an in-depth review of on-chip transformers, starting with a presentation on the various equivalent circuit models to represent transformer behavior and characterize their performance. Next, a comparative study on the different design and layout strategies is provided, and the fabrication techniques for on-chip implementation of transformers are discussed. The critical performance parameters to characterize on-chip transformers, such as the Q-factor, coupling factor (k), resonance frequency (fSR), and others, are discussed with reference to trade-offs in silicon chip real-estate. The performance parameters and area requirements for different types of on-chip transformers are summarized in tabular form and compared. Several techniques for performance enhancement of on-chip transformers, including the different types of micromachining and integration approaches stemming from MEMS (microelectromechanical systems) technologies are also analyzed. Lastly, the different uses and applications of on-chip transformers are discussed to highlight the evolution of on-chip transformer technology over the recent years and provide directions for future work in this field.

6.
Sensors (Basel) ; 17(4)2017 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-28420158

RESUMEN

Biopotential signals are recorded mostly by using sticky, pre-gelled electrodes, which are not ideal for wearable, point-of-care monitoring where the usability of the personalized medical device depends critically on the level of comfort and wearability of the electrodes. We report a fully-wearable medical garment for mobile monitoring of cardiac biopotentials from the wrists or the neck with minimum restriction to regular clothing habits. The wearable prototype is based on elastic bands with graphene functionalized, textile electrodes and battery-powered, low-cost electronics for signal acquisition and wireless transmission. Comparison of the electrocardiogram (ECG) recordings obtained from the wearable prototype against conventional wet electrodes indicate excellent conformity and spectral coherence among the two signals.


Asunto(s)
Vestuario , Electrocardiografía , Diseño de Equipo , Grafito , Textiles
7.
Microsyst Nanoeng ; 9: 74, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37303832

RESUMEN

Electrostatic microelectromechanical (MEMS) switches are the basic building blocks for various radio-frequency (RF) transceivers. However, conventional cantilever-based designs of MEMS switches require a large actuation voltage, exhibit limited RF performance, and suffer from many performance tradeoffs due to their flat geometries restricted in two dimensions (2D). Here, by leveraging the residual stress in thin films, we report a novel development of three-dimensional (3D) wavy microstructures, which offer the potential to serve as high-performance RF switches. Relying on standard IC-compatible metallic materials, we devise a simple fabrication process to repeatedly manufacture out-of-plane wavy beams with controllable bending profiles and yields reaching 100%. We then demonstrate the utility of such metallic wavy beams as RF switches achieving both extremely low actuation voltage and improved RF performance owing to their unique geometry, which is tunable in three dimensions and exceeds the capabilities of current state-of-the-art flat-cantilever switches with 2D-restricted topology. As such, the wavy cantilever switch presented in this work actuates at voltages as low as 24 V while simultaneously exhibiting RF isolation and insertion loss of 20 dB and 0.75 dB, respectively, for frequencies up to 40 GHz. Wavy switch designs with 3D geometries break through the design limits set by traditional flat cantilevers and provide an additional degree of freedom or control knob in the switch design process, which could enable further optimization of switching networks used in current 5G and upcoming 6G communication scenarios.

8.
Biosensors (Basel) ; 12(3)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35323441

RESUMEN

The separation of circulating tumor cells (CTCs) from blood samples is crucial for the early diagnosis of cancer. During recent years, hybrid microfluidics platforms, consisting of both passive and active components, have been an emerging means for the label-free enrichment of circulating tumor cells due to their advantages such as multi-target cell processing with high efficiency and high sensitivity. In this study, spiral microchannels with different dimensions were coupled with surface acoustic waves (SAWs). Numerical simulations were conducted at different Reynolds numbers to analyze the performance of hybrid devices in the sorting and separation of CTCs from red blood cells (RBCs) and white blood cells (WBCs). Overall, in the first stage, the two-loop spiral microchannel structure allowed for the utilization of inertial forces for passive separation. In the second stage, SAWs were introduced to the device. Thus, five nodal pressure lines corresponding to the lateral position of the five outlets were generated. According to their physical properties, the cells were trapped and lined up on the corresponding nodal lines. The results showed that three different cell types (CTCs, RBCs, and WBCs) were successfully focused and collected from the different outlets of the microchannels by implementing the proposed multi-stage hybrid system.


Asunto(s)
Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Línea Celular Tumoral , Separación Celular , Humanos , Microfluídica/métodos , Células Neoplásicas Circulantes/metabolismo , Sonido
9.
Phys Eng Sci Med ; 45(4): 1317-1323, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36036875

RESUMEN

Point-of-care remote photoplethysmography (rPPG) devices that utilize low-cost RGB cameras have drawn considerable attention due to their convenience in contactless and non-invasive vital signs monitoring. In rPPG, sufficient lighting conditions are essential for obtaining accurate diagnostics by observing the complete signal morphology. The effects of illuminance intensity and light source settings play a significant role in rPPG assessment quality, and it was previously observed that different lighting schemes result in different signal quality and morphology. This study presents a quantitative empirical analysis where the quality and morphology of rPPG signals were assessed under different light settings. Participants' faces were exposed to the white LED spotlight, first when the sources were installed directly behind the video camera, and then when the sources were installed in a cross-polarized scheme. Hence, the effect of specular reflectance on rPPG signals could be observed in an increasing projection. The signal qualities were analyzed in each intensity level using a signal-to-noise (SNR) ratio metric. In 3 of 7 participants, placing the video camera on the same level as the light source led to signal quality loss of up to 3 dB for the range 30-60 Lux. In addition, two fundamental morphological features were analyzed, and the derivative-related feature was found to be increasing with illuminance intensity in 6 of 7 participants.


Asunto(s)
Algoritmos , Fotopletismografía , Humanos , Signos Vitales , Grabación de Cinta de Video
10.
Micromachines (Basel) ; 13(1)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35056284

RESUMEN

High accuracy measurement of mechanical strain is critical and broadly practiced in several application areas including structural health monitoring, industrial process control, manufacturing, avionics and the automotive industry, to name a few. Strain sensors, otherwise known as strain gauges, are fueled by various nanomaterials, among which graphene has attracted great interest in recent years, due to its unique electro-mechanical characteristics. Graphene shows not only exceptional physical properties but also has remarkable mechanical properties, such as piezoresistivity, which makes it a perfect candidate for strain sensing applications. In the present review, we provide an in-depth overview of the latest studies focusing on graphene and its strain sensing mechanism along with various applications. We start by providing a description of the fundamental properties, synthesis techniques and characterization methods of graphene, and then build forward to the discussion of numerous types of graphene-based strain sensors with side-by-side tabular comparison in terms of figures-of-merit, including strain range and sensitivity, otherwise referred to as the gauge factor. We demonstrate the material synthesis, device fabrication and integration challenges for researchers to achieve both wide strain range and high sensitivity in graphene-based strain sensors. Last of all, several applications of graphene-based strain sensors for different purposes are described. All in all, the evolutionary process of graphene-based strain sensors in recent years, as well as the upcoming challenges and future directions for emerging studies are highlighted.

11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1238-1241, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34891511

RESUMEN

The ability to characterize hematopoietic cells quickly and reliably is critical in precision medicine. Analysis of hematopoietic cells will lead to the diagnosis of various diseases, including infectious diseases and cancer. Microfluidic devices provide label-free, time-efficient, and quantitative analysis in this regard. A microfluidic system is provided in this work to separate Red blood cells (RBCs) from B-Lymphocytes (B-Cells). One of the ways for manipulating and separating micron-sized particles is dielectrophoresis (DEP). Dielectrophoretic manipulation of red blood cells (RBC) and B-Lymphocytes (B-Cells), with diameters of 2.8 µm and 3.29 µm, respectively, is studied. The simulation results of a microfluidic device with a sidewall electrode are shown. RBCs could be separated with 98 % efficiency from B-Cells at an applied voltage ±0.06 V with a frequency and flow rate of 10 kHz and 1.5 µL/s, respectively.


Asunto(s)
Técnicas Analíticas Microfluídicas , Linfocitos B , Electroforesis , Eritrocitos , Dispositivos Laboratorio en un Chip
12.
Beilstein J Nanotechnol ; 12: 180-189, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33614384

RESUMEN

The study of eye movements and the measurement of the resulting biopotential, referred to as electrooculography (EOG), may find increasing use in applications within the domain of activity recognition, context awareness, mobile human-computer and human-machine interaction (HCI/HMI), and personal medical devices; provided that, seamless sensing of eye activity and processing thereof is achieved by a truly wearable, low-cost, and accessible technology. The present study demonstrates an alternative to the bulky and expensive camera-based eye tracking systems and reports the development of a graphene textile-based personal assistive device for the first time. This self-contained wearable prototype comprises a headband with soft graphene textile electrodes that overcome the limitations of conventional "wet" electrodes, along with miniaturized, portable readout electronics with real-time signal processing capability that can stream data to a remote device over Bluetooth. The potential of graphene textiles in wearable eye tracking and eye-operated remote object interaction is demonstrated by controlling a mouse cursor on screen for typing with a virtual keyboard and enabling navigation of a four-wheeled robot in a maze, all utilizing five different eye motions initiated with a single channel EOG acquisition. Typing speeds of up to six characters per minute without prediction algorithms and guidance of the robot in a maze with four 180° turns were successfully achieved with perfect pattern detection accuracies of 100% and 98%, respectively.

13.
ACS Omega ; 6(13): 8744-8753, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33842746

RESUMEN

In the past decade, humidity measurements have ubiquitously gained consideration in the wide range of application paradigms such as industrial predictive maintenance, instrumentation, automation, agriculture, climate monitoring, healthcare, and semiconductor industries. Accurate humidity measurements and cost-effective fabrication processes for large-volume and high-performance sensors with flexible form factors are essential to meet the stringent performance requirements of the emerging application areas. To address this need, recent efforts focus on development of innovative sensing modalities, process technologies, and exploration and integration of new materials to enable low-cost, robust, and flexible humidity sensors with ultrahigh sensitivity and linearity, large dynamic range, low hysteresis, and fast response time. In this review paper, we present an overview of flexible humidity sensors based on distinct sensing mechanisms, employed processing techniques, and various functional sensing layers and substrate materials for specific applications. Furthermore, we present the critical device design parameters considered to be indicative of sensor performance such as relative humidity range, along with a discussion on some of the specific applications and use cases.

14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 3807-10, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26737123

RESUMEN

In this paper, we have developed a simple method for adaptive out-filtering of the motion artifact from the electrocardiogram (ECG) obtained by using conductive textile electrodes. The textile electrodes were placed on the left and the right wrist to measure ECG through lead-1 configuration. The motion artifact was induced by simple hand movements. The reference signal for adaptive filtering was obtained by placing additional electrodes at one hand to capture the motion of the hand. The adaptive filtering was compared to independent component analysis (ICA) algorithm. The signal-to-noise ratio (SNR) for the adaptive filtering approach was higher than independent component analysis in most cases.


Asunto(s)
Artefactos , Electrocardiografía/instrumentación , Algoritmos , Vestuario , Electrocardiografía/métodos , Electrodos , Humanos , Monitoreo Ambulatorio , Movimiento , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido , Textiles
15.
J Biomed Opt ; 17(11): 116019, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23139043

RESUMEN

Achieving real-time photoacoustic (PA) tomography typically requires multi-element ultrasound transducer arrays and their associated multiple data acquisition (DAQ) electronics to receive PA waves simultaneously. We report the first demonstration of a photoacoustic tomography (PAT) system using optical fiber-based parallel acoustic delay lines (PADLs). By employing PADLs to introduce specific time delays, the PA signals (on the order of a few micro seconds) can be forced to arrive at the ultrasonic transducers at different times. As a result, time-delayed PA signals in multiple channels can be ultimately received and processed in a serial manner with a single-element transducer, followed by single-channel DAQ electronics. Our results show that an optically absorbing target in an optically scattering medium can be photoacoustically imaged using the newly developed PADL-based PAT system. Potentially, this approach could be adopted to significantly reduce the complexity and cost of ultrasonic array receiver systems.


Asunto(s)
Técnicas Fotoacústicas/métodos , Tomografía Óptica/métodos , Humanos , Rayos Láser , Fibras Ópticas , Fenómenos Ópticos , Fantasmas de Imagen , Técnicas Fotoacústicas/instrumentación , Técnicas Fotoacústicas/estadística & datos numéricos , Tomografía Óptica/instrumentación , Tomografía Óptica/estadística & datos numéricos , Transductores , Ultrasonografía/instrumentación , Ultrasonografía/métodos , Ultrasonografía/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda