Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Am Chem Soc ; 146(30): 20982-20988, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39031765

RESUMEN

Catalytic methane (CH4) combustion is a promising approach to reducing the release of unburned methane in exhaust gas. Here, we report Co-exchanged ß zeolite (Coß) as an efficient catalyst for CH4 combustion using O3. A series of ion-exchanged ß zeolites (Co, Ni, Mn, Fe, and Pd) are subjected to the catalytic test, and Coß exhibits a superior performance in a low-temperature region (<100 °C). The results of X-ray absorption spectroscopy (XAS) and catalytic tests for Coß with different Co loadings indicate the isolated Co species is the plausible active site. The reaction mechanism of CH4 combustion over the isolated Co2+ cation is theoretically investigated by the single-component artificial force-induced reaction (SC-AFIR) method to thoroughly search for possible reaction routes. The resulting path toward CO2 formation shows an activation energy of 73 kJ/mol for the rate-determining step and an exothermicity of 1025 kJ/mol, which supports the experimental results. During a long-term catalytic test for 160 h without external heating, the CH4 conversion gradually decreases from 80 to 40%, but the conversion fully recovers after dehydration at 500 °C (0.5 h). The copresence of H2O and CO exhibits a negative impact on the catalytic activity, while NO and SO2 do not markedly change the catalytic activity.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda