Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Opt Express ; 32(12): 21216-21229, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38859481

RESUMEN

Metasurfaces are emerging as powerful tools for manipulating complex light fields, offering enhanced control in free space and on-chip waveguide applications. Their ability to customize refractive indices and dispersion properties opens up new possibilities in light guiding, yet their efficiency in exciting guided waves, particularly through metallic structures, is not fully explored. Here, we present a new method for exciting terahertz (THz) guided waves using Fabry-Perot (FP) cavity-assisted metasurfaces that enable spin-selective directional coupling and mode selection. Our design uses a substrate-free ridge silicon THz waveguide with air cladding and a supporting slab, incorporating placed metallic metasurfaces to exploit their unique interaction with the guided waves. With the silicon thin layer and air serving as an FP cavity, THz waves enter from the bottom of the device, thereby intensifying the impact of the metasurfaces. The inverse-structured complementary metasurface could enhance excitation performance. We demonstrate selective excitation of TE00 and TE10 modes with directional control, confirmed through simulations and experimental validations using a THz vector network analyzer (VNA) system. This work broadens the potential of metasurfaces for advanced THz waveguide technologies.

2.
Nanomaterials (Basel) ; 11(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201551

RESUMEN

In the last couple of decades, terahertz (THz) technologies, which lie in the frequency gap between the infrared and microwaves, have been greatly enhanced and investigated due to possible opportunities in a plethora of THz applications, such as imaging, security, and wireless communications. Photonics has led the way to the generation, modulation, and detection of THz waves such as the photomixing technique. In tandem with these investigations, researchers have been exploring ways to use silicon photonics technologies for THz applications to leverage the cost-effective large-scale fabrication and integration opportunities that it would enable. Although silicon photonics has enabled the implementation of a large number of optical components for practical use, for THz integrated systems, we still face several challenges associated with high-quality hybrid silicon lasers, conversion efficiency, device integration, and fabrication. This paper provides an overview of recent progress in THz technologies based on silicon photonics or hybrid silicon photonics, including THz generation, detection, phase modulation, intensity modulation, and passive components. As silicon-based electronic and photonic circuits are further approaching THz frequencies, one single chip with electronics, photonics, and THz functions seems inevitable, resulting in the ultimate dream of a THz electronic-photonic integrated circuit.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda