Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nature ; 471(7339): 508-12, 2011 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-21346761

RESUMEN

Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated. The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system, multipotent self-renewing progenitors called neuroblasts undergo quiescence in a stereotypical spatiotemporal pattern. Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer. Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids. Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called the fat body. Here we provide in vivo evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size but do not reactivate neuroblasts. Drosophila thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body-glia-neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour.


Asunto(s)
Adipocitos/metabolismo , Drosophila melanogaster/metabolismo , Insulina/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adipocitos/efectos de los fármacos , Aminoácidos/farmacología , Animales , Sistema Nervioso Central/citología , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Dieta , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/crecimiento & desarrollo , Cuerpo Adiposo/citología , Cuerpo Adiposo/efectos de los fármacos , Cuerpo Adiposo/metabolismo , Larva/citología , Larva/efectos de los fármacos , Larva/metabolismo , Células-Madre Neurales/efectos de los fármacos , Neuroglía/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda