Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Cerebrovasc Endovasc Neurosurg ; 23(2): 136-144, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34107594

RESUMEN

Intracranial atherosclerotic disease (ICAD) is an important cause of ischemic stroke. The etiology of stroke in patients with ICAD could be due to several mechanisms including hypoperfusion, artery-to-artery embolism, and plaque extension over small penetrating artery ostia. Management of symptomatic ICAD includes medical and endovascular management. Quantitative magnetic resonance angiography (MRA) is a technique that allows for non-invasive measurement of large vessel blood flow in the head and neck. Here, we describe procedural and clinical outcomes on three patients who presented with symptomatic ICAD and were treated with angioplasty and stenting. Quantitative MRA was used pre- and post- procedurally to assess the effects of stenting on the intracranial blood flow. Quantitative measures of intracranial blood flow may serve as an additional triage tool in the evaluation of patients with symptomatic ICAD.

2.
J Biomech ; 41(8): 1697-706, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18466908

RESUMEN

This study focuses on the dynamic flow through the fetal aortic arch driven by the concurrent action of right and left ventricles. We created a parametric pulsatile computational fluid dynamics (CFD) model of the fetal aortic junction with physiologic vessel geometries. To gain a better biophysical understanding, an in vitro experimental fetal flow loop for flow visualization was constructed for identical CFD conditions. CFD and in vitro experimental results were comparable. Swirling flow during the acceleration phase of the cardiac cycle and unidirectional flow following mid-deceleration phase were observed in pulmonary arteries (PA), head-neck vessels, and descending aorta. Right-to-left (oxygenated) blood flowed through the ductus arteriosus (DA) posterior relative to the antegrade left ventricular outflow tract (LVOT) stream and resembled jet flow. LVOT and right ventricular outflow tract flow mixing had not completed until approximately 3.5 descending aorta diameters downstream of the DA insertion into the aortic arch. Normal arch model flow patterns were then compared to flow patterns of four common congenital heart malformations that include aortic arch anomalies. Weak oscillatory reversing flow through the DA junction was observed only for the Tetralogy of Fallot configuration. PA and hypoplastic left heart syndrome configurations demonstrated complex, abnormal flow patterns in the PAs and head-neck vessels. Aortic coarctation resulted in large-scale recirculating flow in the aortic arch proximal to the DA. Intravascular flow patterns spatially correlated with abnormal vascular structures consistent with the paradigm that abnormal intravascular flow patterns associated with congenital heart disease influence vascular growth and function.


Asunto(s)
Aorta Torácica/embriología , Aorta Torácica/fisiología , Aorta Torácica/anomalías , Coartación Aórtica/embriología , Simulación por Computador , Conducto Arterial/embriología , Conducto Arterial/fisiología , Femenino , Edad Gestacional , Hemodinámica , Humanos , Embarazo , Arteria Pulmonar/embriología , Arteria Pulmonar/fisiología , Flujo Pulsátil , Flujo Sanguíneo Regional
3.
J Biomed Mater Res A ; 100(4): 911-7, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22275149

RESUMEN

Osseointegrated implants (OI)s for transfemoral prosthetic attachment offer amputees an alternative to the traditional socket attachment. Potential benefits include a natural transfer of loads directly to the skeleton via the percutaneous abutment, relief of pain and discomfort of residual limb soft tissues by eliminating sockets, increased sensory feedback, and improved function. Despite the benefits, the skin-implant interface remains a critical limitation, as it is highly prone to bacterial infection. One approach to improve clinical outcomes is to minimize stress concentrations at the skin-implant interface due to shear loading, reducing soft tissue breakdown and subsequent risk of infection. We hypothesized that broadening the bone base at the distal end of the femur would provide added surface area for skin adhesion and reduce stresses at the skin-implant interface. We tested this hypothesis using finite element models of an OI in a residual limb. Results showed a dramatic decrease in stress reduction, with up to ~90% decrease in stresses at the skin-implant interface as cortical bone thickness increased from 2 to 8 mm. The findings in this study suggests that surgical techniques could stabilize the skin-implant interface, thus enhancing a skin-to-bone seal around the percutaneous device and minimizing infection.


Asunto(s)
Simulación por Computador , Oseointegración , Prótesis e Implantes , Piel , Estrés Fisiológico , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda