RESUMEN
The strategy of in vivo self-assembly has been developed for improved enrichment and long-term retention of anticancer drug in tumor tissues. However, most self-assemblies with non-covalent bonding interactions are susceptible to complex physiological environments, leading to weak stability and loss of biological function. Here, we develop a coupling-induced assembly (CIA) strategy to generate covalently crosslinked nanofibers, which is applied for in situ constructing artificial shell on mitochondria. The oxidation-responsive peptide-porphyrin conjugate P1 is synthesized, which self-assemble into nanoparticles. Under the oxidative microenvironment of mitochondria, the coupling of thiols in P1 causes the formation of dimers, which is further ordered and stacked into crosslinked nanofibers. As a result, the artificial shell is constructed on the mitochondria efficiently through multivalent cooperative interactions due to the increased binding sites. Under ultrasound (US) irradiation, the porphyrin molecules in the shell produce a large amount of reactive oxygen species (ROS) that act on the adjacent mitochondrial membrane, exhibiting ~2-fold higher antitumor activity than nanoparticles in vitro and in vivo. Therefore, the mitochondria-targeted CIA strategy provides a novel perspective on improved sonodynamic therapy (SDT) and shows potential applications in antitumor therapies.
Asunto(s)
Antineoplásicos , Mitocondrias , Porfirinas , Especies Reactivas de Oxígeno , Mitocondrias/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Porfirinas/química , Animales , Péptidos/química , Péptidos/metabolismo , Nanopartículas/química , Ratones , Nanofibras/química , Línea Celular TumoralRESUMEN
Intracellular delivery of macromolecules is a critical procedure for biological research and drug discovery, including proteins, peptides, vaccines, antibodies and genes. The penetration of macromolecule therapeutics through the cell membrane to intracellular targets is a prerequisite for their biological activity, but most delivery systems rely on the endocytic pathway to enter the cell and confront an inability to escape from the lysosome. A profound understanding of the cellular internalization of transporting carriers can (i) optimize the design of drug delivery systems, (ii) maintain the biological activity of biomolecular drugs, (iii) improve the efficiency of intracellular macromolecule transport and release, (iv) bring new opportunities for the discovery of macromolecule therapeutics and treatment of refractory disease. This article summarizes the uptake pathway of intracellular delivery vehicles for macromolecule drugs, hoping to provide ideas and references for macromolecule therapeutics delivery systems.
Asunto(s)
Sistemas de Liberación de Medicamentos , Péptidos , Sistemas de Liberación de Medicamentos/métodos , Sustancias Macromoleculares/química , Péptidos/química , Transporte Biológico , Proteínas/metabolismoRESUMEN
Hypoxia at the solid tumor site is generally related to the unrestricted proliferation and metabolism of cancerous cells, which can cause tumor metastasis and aggravate tumor progression. Besides, hypoxia plays a substantial role in tumor treatment, and it is one of the main reasons that malignant tumors are difficult to cure and have a poor prognosis. On account of the tumor specific hypoxic environment, many hypoxia-associative nanomedicine have been proposed for tumor treatment. Considering the enhanced targeting effect, designing hypoxia-associative nanomedicine can not only minimize the adverse effects of drugs on normal tissues, but also achieve targeted therapy at the lesion site. Mostly, there can be three strategies for the treatment of hypoxic tumor, including improvement of hypoxic environment, hypoxia responsive drug release and hypoxia activated prodrug. The review describes the design principle and applications of tumor hypoxia-associative nanomedicine in recent years, and also explores its development trends in solid tumor treatment. Moreover, this review presents the current limitations of tumor hypoxia-associative nanomedicine in chemotherapy, radiotherapy, photodynamic therapy, sonodynamic therapy and immunotherapy, which may provide a reference for clinic translation of tumor hypoxia-associative nanomedicine.