Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Mikrochim Acta ; 191(8): 474, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037586

RESUMEN

A novel magnetic dispersive solid phase extraction (MDSPE) procedure based on the deep eutectic solvent (DES) modified magnetic graphene oxide/metal organic frameworks nanocomposites (MGO@ZIF-8@DES) was established and used for the efficient enrichment of estradiol, estrone, and diethylstilbestrol in cosmetics (toner, lotion, and cream) for the first time. Then, the three estrogens were separated and determined by UHPLC-UV analysis method. In order to study the features and morphology of the synthesized adsorbents, various techniques such as FT-IR, SEM, and VSM measurements were executed. The MGO@ZIF-8@DES nanocomposites combine the advantages of high adsorption capacity, adequate stability in aqueous solution, and convenient separation from the sample solution. To achieve high extraction recoveries, the Box-Behnken design and single factor experiment were applied in the experimental design. Under the optimum conditions, the method detection limits for three estrogens were 20-30 ng g-1. This approach showed a good correlation coefficient (r more than 0.9998) and reasonable linearity in the range 70-10000 ng g-1. The relative standard deviations for intra-day and inter-day were beneath 7.5% and 8.9%, respectively. The developed MDSPE-UHPLC-UV method was successfully used to determine  three estrogens in cosmetics, and acceptable recoveries in the intervals of 83.5-95.9% were obtained. Finally, three estrogens were not detected in some cosmetic samples. In addition, the Complex GAPI tool was used to evaluate the greenness of the developed pretreatment method. The developed MDSPE-UHPLC-UV method is sensitive, accurate, rapid, and eco-friendly, which provides a promising strategy for determining hormones in different complex samples.


Asunto(s)
Cosméticos , Disolventes Eutécticos Profundos , Estrógenos , Grafito , Estructuras Metalorgánicas , Nanocompuestos , Extracción en Fase Sólida , Grafito/química , Cosméticos/química , Cosméticos/análisis , Nanocompuestos/química , Estructuras Metalorgánicas/química , Extracción en Fase Sólida/métodos , Estrógenos/análisis , Estrógenos/aislamiento & purificación , Estrógenos/química , Disolventes Eutécticos Profundos/química , Límite de Detección , Estradiol/química , Estradiol/análisis , Estradiol/aislamiento & purificación , Estrona/análisis , Estrona/química , Estrona/aislamiento & purificación , Adsorción , Dietilestilbestrol/análisis , Dietilestilbestrol/química , Dietilestilbestrol/aislamiento & purificación , Cromatografía Líquida de Alta Presión/métodos
2.
J Pharm Biomed Anal ; 242: 116062, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387127

RESUMEN

Gushudan (GSD) was a traditional Chinese prescription with the remarkable effect of kidney-tonifying and bone-strengthening. However, the potential prevention mechanisms of the GSD on kidney-yang-deficiency-syndrome (KYDS) and its regulation on gut microbe metabolism still need to be further systematically investigated. This study established untargeted urinary metabolomics based on RP/HILIC-UHPLC-Q-Orbitrap HRMS and combined with multivariate statistical analysis to discover differential metabolites and key metabolic pathways. And the gut microbe metabolism pathway-targeted metabolomic based on HILIC-UHPLC-MS/MS was developed and validated to simultaneously determine 15 gut microbe-mediated metabolites in urine samples from the control group (CON), KYDS model group (MOD), GSD-treatment group (GSD) and positive group (POS). The results showed that a total of 36 differential metabolites were discovered in untargeted metabolomics. These differential metabolites included proline, cytosine, butyric acid and nicotinic acid, which were primarily involved in the gut microbe metabolism, amino acid metabolism, energy metabolism and nucleotide metabolism. And GSD played a role in preventing KYDS by regulating these metabolic pathways. The targeted metabolomics found that the levels of 10 gut microbe-mediated metabolites had significant differences in different groups. Among them, compared with the CON group, the levels of lysine, tryptophan, phenylacetylglycine and hippuric acid were increased in the MOD group, while the levels of threonine, leucine, dimethylamine, trimethylamine, succinic acid and butyric acid were decreased, which verified the disorders of gut microbe metabolism in the KYDS rats and GSD had a significant regulatory effect on this disorder. As well as by comparing analysis, it was found that the experimental results were consistent with previous metabolomics and microbiomics of fecal samples. Therefore, this integrated strategy of untargeted and targeted metabolomics not only elucidated the potential prevention mechanism of GSD on KYDS, but also provided a scientific basis for GSD preventing KYDS via the "gut-kidney" axis.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Ratas , Animales , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Ácido Butírico , Metabolómica/métodos , Medicamentos Herbarios Chinos/farmacología , Deficiencia Yang/metabolismo , Riñón/metabolismo , Biomarcadores/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda