RESUMEN
Formamidinium lead iodide (FAPbI3) perovskite has lately surfaced as the preferred contender for highly proficient and robust perovskite solar cells (PSCs), owing to its favorable bandgap and superior thermal stability. Nevertheless, volatilization and migration of iodide ions (I-) result in non-radiating recombination centers, and the presence of large formamidine (FA) cations tends to cause lattice strain, thereby reducing the power conversion efficiency (PCE) and stability of PSCs. To solve these problems, the lead formate (PbFa) is added into the perovskite solution, which effectively mitigates the halogen vacancy and provides tensile strain outside the perovskite lattice, thereby enhancing its properties. The strong coordination between the CâO of HCOO- and Pb-I backbones effectively immobilizes anions, significantly increases the energy barrier for anion vacancy formation and migration, and reduces the risk of lead ion (Pb2+) leakage, thereby improving the operation and environmental safety of the device. Consequently, the champion PCE of devices with Ag electrodes can be increased from 22.15% to 24.32%. The unencapsulated PSCs can still maintain 90% of the original PCE even be stored in an N2 atmosphere for 1440 h. Moreover, the target devices have significantly improved performance in terms of light exposure, heat, or humidity.
RESUMEN
Both the physicochemical properties of catalytic material and the structure of loaded catalyst layer (CL) on gas diffusion electrode (GDE) are of crucial importance in determining the conversion efficiency and product selectivity of carbon dioxide reduction reaction (CO2RR). However, the highly reducing reaction condition of CO2RR will lead to the uncontrollable structural and compositional changes of catalysts, making it difficult to tailor surface properties and microstructure of the real active species for favored products. Herein, the interlayer microenvironment of copper-based layered double hydroxides (LDHs) is rationally tuned by a facile ink solvent engineering, which affects both the surface characters and microstructure of CL on GDE, leading to distinct catalytic activity and product selectivity. According to series of in situ and ex situ techniques, the appropriate surface wettability and thickness of porous CL are found to play critical roles in controlling the local CO2 concentration and water dissociation steps that are key for hydrogenation during CO2RR, leading to a high Faradaic efficiency of 75.3% for C2+ products and a partial current density of 275 mA cm-2 at -0.8 V versus RHE. This work provides insights into rational design of efficient electrocatalysts toward CO2RR for multi-carbon generation.
RESUMEN
Carbon-based CsPbI3 perovskite solar cells without hole transporter (C-PSCs) have achieved intense attention due to its simple device structure and high chemical stability. However, the severe interface energy loss at the CsPbI3/carbon interface, attributed to the lower hole selectivity for inefficient charge separation, greatly limits device performance. Hence, dipole electric field (DEF) is deployed at the above interface to address the above issue by using a pole molecule, 4-trifluoromethyl-Phenylammonium iodide (CF3-PAI), in which the âNH3 group anchors on the perovskite surface and the âCF3 group extends away from it and connects with carbon electrode. The DEF is proven to align with the built-in electric field, that is pointing toward carbon electrode, which well enhances hole selectivity and charge separation at the interface. Besides, CF3-PAI molecules also serve as defect passivator for reducing trap state density, which further suppresses defect-induced non-radiative recombination. Consequently, the CsPbI3 C-PSCs achieve an excellent efficiency of 18.33% with a high VOC of 1.144 V for inorganic C-PSCs without hole transporter.
RESUMEN
The development of cost-effective transition metal catalysts for oxygen evolution reaction (OER) is critical for the production of hydrogen fuel from water splitting. Low-cost and efficient stainless steel-based catalysts are expected to replace the scarce platinum group metals for large-scale energy applications. Here in this work, we report the conversion of commonly available inexpensive and easily accessible 434-L stainless steel (SS) into highly active and stable electrodes by corrosion and sulfuration strategies. The Nix Fe1-x S layer as a pre-catalyst and S-doped Nix Fe oxyhydroxides inâ situ formed on the catalyst surface are the true active species for OER. The optimized 434-L stainless steel-based electrocatalyst exhibits a low overpotential of 298â mV at 10â mA cm-2 in 1.0â M KOH with a small OER kinetics (the Tafel slope of 54.8â mV dec-1 ) and good stability. This work reveals the 434-L alloy stainless steel with Fe and Cr as the main elements can be used as qualified OER catalysts by surface modification, along with a new mentality to solve the energy and resource waste problems.
RESUMEN
Localized surface plasmon resonance (LSPR) is caused by the irradiation of light on a metal surface. Here we present a surface plasmon catalytic reaction at the gas-liquid-solid three phase interface. Electrochemical deposition was used to prepare Ag nanostructure/Cu mesh surface-enhanced Raman scattering (SERS) substrates. Surface wettability was adjusted by changing the processing time of the surfactant. Then a three-phase interface platform was constructed with good SERS performance and active surface plasmon catalytic capacity by droplet detection. At the gas-liquid-solid three phase interface, different oxygen supplies for the catalytic reaction were offered on surfaces with different wettability values. Thus, in this study, surface plasmon catalytic reaction of p-nitroaniline (PNA) was successfully in situ monitored and the reaction mechanism was explored. Otherwise, density functional theory (DFT) was used to calculate the Raman spectra and energy levels of the reactants and reaction products. Moreover, this work provides a new platform for monitoring the surface plasmon reaction at the gas-liquid-solid three-phase interface and contributes to the development of the study in the surface plasmon catalytic reaction field.
RESUMEN
To understand the effect of f-functions in predicting the right reaction mechanism for hypervalent iodine reagents, we adopt the Ahlrichs basis set family def2-SVP and def2-TZVP to revisit the potential energy surfaces of IBX-mediated oxidation and Togni I's isomerisation. Our results further prove that f-functions (in either Pople, Dunning, or Ahlrichs basis set series) are indispensable to predict the correct rate-determining step of hypervalent iodine reagents. The f-functions have a significant impact on the predicted reaction barriers for processes involving the IX (X = O, OH, CF3 , etc.) bond cleavage and formation, for example, in the reductive elimination step or the hypervalent twist step. We furthermore explore two hypervalent twist modes that account for the different influences of f-functions for IBX and Togni I. Our findings may be helpful for theoretical chemists to appropriately study the reaction mechanism of hypervalent iodine reagents.
RESUMEN
Accurately detect the residues of organophosphate pesticides (OPs) in food and environment is critical to our daily lives. In this study, we developed a novel acetylcholinesterase (AChE) biosensor based on Au-Tb alloy nanospheres (NSs) for rapid and sensitive detection of OPs for the first time. Au-Tb alloy NSs that with good conductivity and biocompatibility were produced with a mild hydrothermal. Under optimal conditions, the AChE biosensor was obtained by a simple assembly process, with a big linear range (10-13-10-7M) and the limit of detection was 2.51 × 10-14M for the determination of methyl parathion. Moreover, the determination of methyl parathion with the prepared biosensor presented a high sensitivity, outstanding repeatability and superior stability compared with other reported biosensors. Through the determination of tap water and Yanming lake samples, it was proved that the modified biosensor with satisfactory recoveries (96.76%-108.6%), and are realizable in the determination of OPs in real samples.
Asunto(s)
Acetilcolinesterasa , Técnicas Biosensibles/métodos , Enzimas Inmovilizadas , Compuestos Organofosforados/análisis , Plaguicidas/análisis , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Aleaciones/química , Técnicas Electroquímicas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Oro/química , Terbio/química , Contaminantes Químicos del Agua/análisisRESUMEN
Since hypervalent twist followed by reductive elimination is a general reaction pattern for hypervalent iodine reagents, mechanistic studies about the hypervalent twist step could provide significant guidance for experiments. Previous studies have shown that there are two types of hypervalent twist models, i.e. apical twist and equatorial twist. We applied both hypervalent twist models to explain the isomerization mechanism of two important electrophilic trifluoromethylating reagents, Togni I and Togni II. Up to now, there are less detailed studies about the different hypervalent twist modes between both reagents. Here, we successfully identified Togni II's isomerization pathway via equatorial twist, and suggested that different hypervalent twist models should be considered to predict the right mechanisms of reactions with hypervalent iodine reagents participating. This study will also be helpful to design new Togni type reagents with higher intrinsic reactivity and stability by avoiding the formation of acyclic by-products.
RESUMEN
We report a method for preparing flexible substrates based on 3D Ag nanodendrites (Ag NDs)/carbon fiber cloth substrate with superhydrophobic surface. Ag NDs were deposited on carbon fiber cloth by electrochemical deposition, and the superhydrophobicity of the surface was achieved by low surface energy modification. The cylinder shape of the carbon fiber provides a three-dimensional structure for Ag NDs, increasing the "hot spot" effect, and is the excellent choice as SERS substrate. At the same time, micro/nanostructures provided by fibers and nanodendrites can easily obtain ultra-wet surfaces. The analyte solution can be directly detected in a droplet onto the superhydrophobic surface without pretreatment, which greatly shortens the detection time. The lowest concentration of crystal violet (CV) that can be detected is 10-10 M, demonstrating good SERS sensitivity of the prepared substrate. It was successfully applied in simultaneous detection of at least three molecules. Thiram and malachite green (MG) can be detected simultaneously in real lake water. Moreover, the conductivity, physical flexibility, and stability of the flexible carbon fiber cloth gives this substrate potential in other fields such as electrochemistry. Graphical abstract Flexible SERS substrate based on Ag nanodendrite-coated carbon fiber cloth: simultaneous detection for multiple pesticides in liquid droplet.
RESUMEN
The present study demonstrated a one-step method for the first time to fabricate self-assembled gold nanoparticle (AuNP) metafilms at the water-toluene interface by adding polystyrene-polyisoprene-polystyrene as the support layer. The thiolated polyethylene glycol and ethanol were used to tune the surface charge density on the AuNPs, constructing a balanced situation at the water-toluene interface. The flexible (AuNP) metafilm can be easily obtained after evaporation of the toluene phase and further used as a surface-enhanced Raman scattering (SERS) substrate for trace thiram detection. The SERS sensitivity was tested using standard Raman probes such as crystal violet and malachite green, both with the detect concentration reaching 1 × 10-11 M. Moreover, the excellent reproducibility and elastic properties make the metafilm promising in practical detection. Hence, the trace thiram detection on an orange pericarp was inspected with the detection limit of 0.5 ppm (1 × 10-6 M) as well as a favorable linearity relation with a correlation coefficient of 0.979, exactly matching the realistic application requirements.
RESUMEN
To understand Raman spectra shifts of nanocrystals, the top-down phonon confinement approach and the bottom-up quantum chemical approach were developed. The former is suitable for large-sized nanocrystals, and the latter is suitable for clusters containing fewer atoms. Here, we find that a simpler chemical bond model based on the bond dispersion feature can demonstrate Raman spectra shift either in normal size II-VI semiconductor nanocrystals or in atomically precise clusters. According to the bond dispersion model, the Raman spectral line of the II-VI semiconductor nanocrystal (AIIBVI) is expressed as the sum of the Lorentz subpeaks of the AII( i)BVI( j) bonds with different coordinates i and j. The calculated Raman lines of CdSe, CdS, CdTe, ZnS, and ZnSe nanocrystals are in agreement with the measured Raman spectral lines. The origin of the red shift and asymmetric broadening of the peak position of nanocrystals may be revealed as well. Results provide insight into how different bonds contribute to different vibrational spectra.
RESUMEN
The authors describe a rapid and direct SERS-based immunoassay for the determination of AFP, an important marker for diagnosis of hepatocellular carcinoma. Silver nanoparticles (AgNPs; 36 nm i.d.) serve as a support to immobilize antibody and as a SERS intensifier, and AFP-modified gold nanoparticles are employed as capturing substrate. Direct and quantitative detection of AFP is accomplished with a limit detection as low as 5 ng·mL-1. Compared to assays based on the use of metal nanoparticles, the use of gold-silver nanoparticle heterodimers as an active SERS substrate can save costs because only a single antibody is required. Moreover, the high selectivity and good linear relationship of detecting AFP in fetal bovine serum indicates its potential applicability for the direct analysis of clinical samples. Graphical abstract Direct and quantitative determination of AFP antigen utilizing SERS has been was successfully presented and applied to detect alpha fetoprotein antigen in fetal bovine serum with detection limit of 2 ngâ¢mL-1.
RESUMEN
Using a homemade, novel, in situ transmission electron microscopy (TEM) double tilt tensile device, plastic behavior of single crystalline Cu nanowires of around 150 nm are studied. Deformation twins occur during the tests as predesigned before the experiments. In situ observation of twin boundary sliding (TBS) caused by full dislocation (extended dislocation) is first revealed at the atomic scale which is confirmed by molecular dynamics (MD) simulation results. Combined with twin boundary migration and multiple dislocations nucleated from surface, TBS causes a superlarge fracture strain which is over 166% and a severe necking which is over 93%, far beyond the typical values for most nanomaterials without twins.
RESUMEN
Graphene-based nanocomposites have recently attracted tremendous research interest in the field of catalysis due to their unique optical and electronic properties. However, direct observation of enhanced plasmon-driven catalytic activity of Au nanoparticles (NPs) supported on reduced graphene oxides (Au/rGO) has rarely been reported. Herein, based on the reduction from 4-nitrobenzenethiol (4-NBT) to p,p'-dimercaptoazobenzene (DMAB), the catalytic property of Au/rGO nanocomposites was investigated and compared with corresponding Au NP samples with similar size distribution. Our results show that Au/rGO nanocomposites could serve as a good catalytic and analytic platform for plasmon-driven chemical reactions. In addition, systematic comparisons were conducted during power- and time-dependent surface-enhanced Raman scattering (SERS) experiments, which exhibited a lower power threshold and higher catalytic efficiency for Au/rGO as compared to Au NPs toward the reaction.
Asunto(s)
Oro/química , Grafito/química , Nanopartículas/química , Óxidos/química , Catálisis , Microscopía Electrónica de Transmisión , Oxidación-Reducción , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Local surface plasmon resonance (LSPR) is a novel catalytic technique that has emerged in recent years, especially in the catalysis of aromatic amine compounds. However, the response process and mechanism are still unclear in current study. In the current field of study, the response process and mechanism are still unclear. In this work, the gas-liquid-solid three-phase interface (GLSTI) was innovatively utilized in this study to validate the reaction mechanism by surface-enhanced Raman spectroscopy. P-Aminothiophenol (PATP) and P-Phenylenediamine (PDA) underwent a surface plasmon-catalyzed reaction by using a silver nano-dendrites substrate with strong SERS activity. The GLSTI significantly facilitates the occurrence of surface plasmon catalytic reactions, which can supply enough oxygen by providing three-phase points. In situ SERS and EC-SERS technologies were combined in this study for the explorations. Therefore, this work is dedicated to deepening the exploration and expanding into new directions in plasmon-induced catalytic reactions.
RESUMEN
The development of high-performance electrodes is essential for improving the charge storage performance of rechargeable devices. In this study, local high-entropy C, N co-doped NiCoMnFe-based layered double hydroxide (C/N-NiCoMnFe-LDH, C/N-NCMF) were designed using a novel method. Multi-component synergistic effects can dramatically modulate the surface electron density, crystalline structure, and band-gap of the electrode. Thus, the electrical conductivity, electron transfer, and affinity for the electrolyte can be optimized. Additionally, the C/N-NCMF yielded a high specific capacitance (1454F·g-1) at 1 A·g-1. The electrode also exhibited excellent cycling stability, with 62 % capacitance retention after 5000 cycles. Moreover, the assembled Zn||C/N-NCMF battery and the C/N-NCMF//AC hybrid supercapacitor yielded excellent energy densities of 63.1 and 35.4 Wh·kg-1 at power densities of 1000 and 825 W·kg-1, and superior cycling performance with 69 % and 88.7 % capacitance retention after 1000 and 30,000 cycles, respectively. Furthermore, the electrode maintained high electrochemical activity and stability and ensured high energy density, power density, and cycling stability of the rechargeable devices even at a low temperature (-20 °C). This study paves a new pathway for regulating the electrochemical performance of LDH-based electrodes.
RESUMEN
Copper-based compounds have attracted increasing attention as electrode materials for rechargeable devices, but their poor conductivity and insufficient stability inhibit their further development. Herein, an effective method has been proposed to improve the electrochemical properties of the copper-based electrodes by coating carbon materials and generating unique micro/nanostructures. The prepared Cu2S/Cu7S4/NC with hierarchical hollow structure possesses excellent electrochemical performance, attributing to the composition and structure optimization. The superior charge storage performance has been assessed by theoretical and experimental research. Specifically, the Cu2S/Cu7S4/NC exhibits remarkably higher electrical conductivity and lower adsorption-free energy for O* and OH* than those of Cu2O. Moreover, the Cu2S/Cu7S4/NC delivers a high specific capacitance of 1261.3 F·g-1 at the current density of 1 A·g-1 and also has great rate performance at higher current densities, which are much better than those of the Cu2O nanocubes. In addition, the assembled hybrid supercapacitor using Cu2S/Cu7S4/NC as the anode exhibits great energy density, power density, and cycling stability. This study has proposed a novel and feasible method for the synthesis of high-performance copper-based electrodes and their electrochemical performance regulation, which is of great significance for the advancement of high-quality electrode materials and rechargeable devices.
RESUMEN
Defects formed at the surface, buried interface and grain boundaries (GB) of CsPbI3 perovskite films considerably limit photovoltaic performance. Such defects could be passivated effectively by the most prevalent post modification strategy without compromising the photoelectric properties of perovskite films, but it is still a great challenge to make this strategy comprehensive to different defects spatially distributed throughout the films. Herein, a spatially selective defect management (SSDM) strategy is developed to roundly passivate various defects at different locations within the perovskite film by a facile one-step treatment procedure using a piperazine-1,4-diium tetrafluoroborate (PZD(BF4)2) solution. The small-size PZD2+ cations could penetrate into the film interior and even make it all the way to the buried interface of CsPbI3 perovskite films, while the BF4- anions, with largely different properties from I- anions, mainly anchor on the film surface. Consequently, virtually all the defects at the surface, buried interface and grain boundaries of CsPbI3 perovskite films are effectively healed, leading to significantly improved film quality, enhanced phase stability, optimized energy level alignment and promoted carrier transport. With these films, the fabricated CsPbI3 PSCs based on carbon electrode (C-PSCs) achieve an efficiency of 18.27%, which is among the highest-reported values for inorganic C-PSCs, and stability of 500 h at 85 °C with 65% efficiency maintenance.
RESUMEN
The correlation of the electronic band structure with the photocatalytic activity of AgTaO3 has been studied by simulation and experiments. Doping wide band gap oxide semiconductors usually introduces discrete mid-gap states, which extends the light absorption but has limited benefit for photocatalytic activity. Density functional theory (DFT) calculations show that compensated co-doping in AgTaO3 can overcome this problem by increasing the light absorption and simultaneously improving the charge carrier mobility. N/H and N/F co-doping can delocalize the discrete mid-gap states created by sole N doping in AgTaO3, which increases the band curvature and the electron-to-hole effective mass ratio. In particular, N/F co-doping creates a continuum of states that extend the valence band of AgTaO3. N/F co-doping thus improves the light absorption without creating the mid-gap states, maintaining the necessary redox potentials for water splitting and preventing from charge carrier trapping. The experimental results have confirmed that the N/F-codoped AgTaO3 exhibits a red-shift of the absorption edge in comparison with the undoped AgTaO3, leading to remarkable enhancement of photocatalytic activity toward hydrogen generation from water.
RESUMEN
In this article, reduction of 4-nitrobenzenthiol (4-NBT) on Au nanoparticles (NPs) was characterized using surface-enhanced Raman scattering (SERS). Plasmon-driven chemical transformation from 4-NBT dimering into p,p'-dimercaptoazobenzene (DMAB) has been investigated on the surface of Au NPs. The laser power-dependent SERS spectra of 4-NBT on the surface of Au substrates were studied, and show that the laser power has an influence on the SERS signals of 4-NBT on Au NPs and production of DMAB by a plasmon-driven surface-catalyzed chemical reaction tends to be much easier under relative high laser power. Furthermore, we have used simple and efficient Au substrates (gold NPs with a size around 45 nm) exhibiting both catalytic properties and SERS activities to monitor the catalytic reaction of surface catalytic reaction process with borohydride solution. The experiments prove that the nitro-to-amino group conversion could be completed by borohydride at ambient conditions on Au substrates. Illuminated with high laser power, 4-NBT molecules and already formed DMAB molecules are further reduced into 4-aminobenzenthiol (4-ABT) by the addition of borohydride, While with low laser power 4-NBT molecules are transformed into 4-ABT with DMAB as the intermediate, which proves Au NPs are a mild and promising catalyst. Our studies might be helpful in extending the understanding of chemical reactions of 4-NBT and related research as well as providing a new strategy synthesis of azo dyes and anilines.