RESUMEN
Lyme spirochetes have coevolved with ticks to optimize transmission to hosts using tick salivary molecules (TSMs) to counteract host defenses. TSMs modulate various molecular events at the tick-host interface. Lymphotoxin-beta receptor (LTßR) is a vital immune receptor and plays protective roles in host immunity against microbial infections. We found that Ltbr knockout mice were more susceptible to Lyme disease spirochetes, suggesting the involvement of LTßR signaling in tick-borne Borrelia infection. Further investigation showed that a 15-kDa TSM protein from Ixodes persulcatus (I. persulcatus salivary protein; IpSAP) functioned as an immunosuppressant to facilitate the transmission and infection of Lyme disease spirochetes. IpSAP directly interacts with LTßR to block its activation, thus inhibiting the downstream signaling and consequently suppressing immunity. IpSAP immunization provided mice with significant protection against I. persulcatus-mediated Borrelia garinii infection. Notably, the immunization showed considerable cross-protection against other Borrelia infections mediated by other ixodid ticks. One of the IpSAP homologs from other ixodid ticks showed similar effects on Lyme spirochete transmission. Together, our findings suggest that LTßR signaling plays an important role in blocking the transmission and pathogenesis of tick-borne Lyme disease spirochetes, and that IpSAP and its homologs are promising candidates for broad-spectrum vaccine development.
Asunto(s)
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Ixodes , Enfermedad de Lyme , Ratones , Animales , Borrelia burgdorferi/genética , Saliva , Ixodes/fisiología , Receptor beta de LinfotoxinaRESUMEN
The emergence of carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa raises fears of untreatable infections and poses the greatest health threats. Antimicrobial peptides (AMPs) are regarded as the most ideal solution to this menace. In this study, a set of peptides was designed based on our previously reported peptide cathelicidin-BF-15, and the lead peptide ZY4, a cyclic peptide stabilized by a disulfide bridge with high stability in vivo (the half-life is 1.8 h), showed excellent activity against P. aeruginosa and A. baumannii, including standard and clinical multidrug-resistant (MDR) strains. ZY4 killed bacteria by permeabilizing the bacterial membrane and showed low propensity to induce resistance, exhibited biofilm inhibition and eradication activities, and also killed persister cells. Notably, administration of ZY4 decreased susceptibility to lung infection by P. aeruginosa and suppressed dissemination of P. aeruginosa and A. baumannii to target organs in a mouse septicemia infection model. These findings identify ZY4 as an ideal candidate against MDR bacterial infections.
RESUMEN
Bacterial DNA (bacDNA) is frequently found in serum of patient with ulcerative colitis (UC) and Crohn's disease, even blood bacterial culture is negative. How bacDNA evades immune elimination and is translocated into blood remain unclear. Here, we showed that bacDNA avoids elimination and disables bacteria-killing function of antimicrobial peptide LL-37 (Cramp in mice) by forming complex with LL-37, which is inducible after culture with bacteria or bacterial products. Elevated LL-37-bacDNA complex was found in plasma and lesions of patients with UC. LL-37-bacDNA promoted inflammation by inducing Th1, Th2 and Th17 differentiation and activating toll-like receptor-9 (TLR9). The complex also increased paracellular permeability, which possibly combines its inflammatory effects to promote local damage and bacDNA translocation into blood. Cramp-bacDNA aggravated mouse colitis severity while interference with the complex ameliorated the disease. The study identifies that inflammatogenic bacDNA utilizes LL-37 as a vehicle for blood translocation and to evade immune elimination. Additionally, bacteria may make a milieu by releasing bacDNA to utilize and resist host antimicrobial peptides as a 'trojan horse'.