Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Nature ; 586(7831): 757-762, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33057194

RESUMEN

De novo mutations in protein-coding genes are a well-established cause of developmental disorders1. However, genes known to be associated with developmental disorders account for only a minority of the observed excess of such de novo mutations1,2. Here, to identify previously undescribed genes associated with developmental disorders, we integrate healthcare and research exome-sequence data from 31,058 parent-offspring trios of individuals with developmental disorders, and develop a simulation-based statistical test to identify gene-specific enrichment of de novo mutations. We identified 285 genes that were significantly associated with developmental disorders, including 28 that had not previously been robustly associated with developmental disorders. Although we detected more genes associated with developmental disorders, much of the excess of de novo mutations in protein-coding genes remains unaccounted for. Modelling suggests that more than 1,000 genes associated with developmental disorders have not yet been described, many of which are likely to be less penetrant than the currently known genes. Research access to clinical diagnostic datasets will be critical for completing the map of genes associated with developmental disorders.


Asunto(s)
Análisis Mutacional de ADN , Análisis de Datos , Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Atención a la Salud/estadística & datos numéricos , Discapacidades del Desarrollo/genética , Enfermedades Genéticas Congénitas/genética , Estudios de Cohortes , Variaciones en el Número de Copia de ADN/genética , Discapacidades del Desarrollo/diagnóstico , Europa (Continente) , Femenino , Enfermedades Genéticas Congénitas/diagnóstico , Mutación de Línea Germinal/genética , Haploinsuficiencia/genética , Humanos , Masculino , Mutación Missense/genética , Penetrancia , Muerte Perinatal , Tamaño de la Muestra
2.
Clin Immunol ; 268: 110375, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39369972

RESUMEN

While next generation sequencing has expanded the scientific understanding of Inborn Errors of Immunity (IEI), the clinical use and re-use of exome sequencing is still emerging. We revisited clinical exome data from 1300 IEI patients using an updated in silico IEI gene panel. Variants were classified and curated through expert review. The molecular diagnostic yield after standard exome analysis was 11.8 %. Through systematic reanalysis, we identified variants of interest in 5.2 % of undiagnosed patients, with 76.7 % being (candidate) disease-causing, providing a (candidate) diagnosis in 15.2 % of our cohort. We find a 1.7 percentage point increase in conclusive molecular diagnoses. We find a high degree of actionability in patients with a genetic diagnosis (76.4 %). Despite the modest absolute diagnostic gain, these data support the benefit of iterative exome reanalysis in IEI patients, conveying the notion that our current understanding of genes and variants involved in IEI is by far not saturated.

3.
Hum Genet ; 143(11): 1379-1399, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39406892

RESUMEN

Although more than 140 genes have been associated with non-syndromic hereditary hearing loss (HL), at least half of the cases remain unexplained in medical genetic testing. One reason is that pathogenic variants are located in 'novel' deafness genes. A variant prioritization approach was used to identify novel (candidate) genes for HL. Exome-wide sequencing data were assessed for subjects with presumed hereditary HL that remained unexplained in medical genetic testing by gene-panel analysis. Cases in group AD had presumed autosomal dominantly inherited HL (n = 124), and in group AR, presumed autosomal recessive HL (n = 337). Variants in known and candidate deafness genes were prioritized based on allele frequencies and predicted effects. Selected variants were tested for their co-segregation with HL. Two cases were solved by variants in recently identified deafness genes (ABHD12, TRRAP). Variant prioritization also revealed potentially causative variants in candidate genes associated with recessive and X-linked HL. Importantly, missense variants in IKZF2 were found to co-segregate with dominantly inherited non-syndromic HL in three families. These variants specifically affected Zn2+-coordinating cysteine or histidine residues of the zinc finger motifs 2 and 3 of the encoded protein Helios. This finding indicates a complex genotype-phenotype correlation for IKZF2 defects, as this gene was previously associated with non-syndromic dysfunction of the immune system and ICHAD syndrome, including HL. The designed strategy for variant prioritization revealed that IKZF2 variants can underlie non-syndromic HL. The large number of candidate genes for HL and variants therein stress the importance of inclusion of family members for variant prioritization.


Asunto(s)
Exoma , Pérdida Auditiva , Linaje , Humanos , Exoma/genética , Femenino , Masculino , Pérdida Auditiva/genética , Factor de Transcripción Ikaros/genética , Estudios de Cohortes , Mutación Missense , Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Frecuencia de los Genes , Adulto , Niño , Sordera/genética
4.
Hum Genet ; 143(5): 721-734, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38691166

RESUMEN

TMPRSS3-related hearing loss presents challenges in correlating genotypic variants with clinical phenotypes due to the small sample sizes of previous studies. We conducted a cross-sectional genomics study coupled with retrospective clinical phenotype analysis on 127 individuals. These individuals were from 16 academic medical centers across 6 countries. Key findings revealed 47 unique TMPRSS3 variants with significant differences in hearing thresholds between those with missense variants versus those with loss-of-function genotypes. The hearing loss progression rate for the DFNB8 subtype was 0.3 dB/year. Post-cochlear implantation, an average word recognition score of 76% was observed. Of the 51 individuals with two missense variants, 10 had DFNB10 with profound hearing loss. These 10 all had at least one of 4 TMPRSS3 variants predicted by computational modeling to be damaging to TMPRSS3 structure and function. To our knowledge, this is the largest study of TMPRSS3 genotype-phenotype correlations. We find significant differences in hearing thresholds, hearing loss progression, and age of presentation, by TMPRSS3 genotype and protein domain affected. Most individuals with TMPRSS3 variants perform well on speech recognition tests after cochlear implant, however increased age at implant is associated with worse outcomes. These findings provide insight for genetic counseling and the on-going design of novel therapeutic approaches.


Asunto(s)
Estudios de Asociación Genética , Pérdida Auditiva , Proteínas de la Membrana , Serina Endopeptidasas , Humanos , Femenino , Masculino , Serina Endopeptidasas/genética , Adulto , Proteínas de la Membrana/genética , Pérdida Auditiva/genética , Niño , Persona de Mediana Edad , Adolescente , Preescolar , Genotipo , Estudios de Cohortes , Fenotipo , Mutación Missense , Estudios Transversales , Adulto Joven , Estudios Retrospectivos , Anciano , Proteínas de Neoplasias
5.
Am J Hum Genet ; 108(4): 608-619, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33740458

RESUMEN

The number and distribution of recessive alleles in the population for various diseases are not known at genome-wide-scale. Based on 6,447 exome sequences of healthy, genetically unrelated Europeans of two distinct ancestries, we estimate that every individual is a carrier of at least 2 pathogenic variants in currently known autosomal-recessive (AR) genes and that 0.8%-1% of European couples are at risk of having a child affected with a severe AR genetic disorder. This risk is 16.5-fold higher for first cousins but is significantly more increased for skeletal disorders and intellectual disabilities due to their distinct genetic architecture.


Asunto(s)
Consanguinidad , Composición Familiar , Genes Recesivos/genética , Variación Genética/genética , Fenotipo , Población Blanca/genética , Estudios de Cohortes , Europa (Continente)/etnología , Exoma/genética , Femenino , Pruebas Genéticas , Salud , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Masculino
6.
Hum Genomics ; 17(1): 39, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37138343

RESUMEN

BACKGROUND: Exome and genome sequencing are the predominant techniques in the diagnosis and research of genetic disorders. Sufficient, uniform and reproducible/consistent sequence coverage is a main determinant for the sensitivity to detect single-nucleotide (SNVs) and copy number variants (CNVs). Here we compared the ability to obtain comprehensive exome coverage for recent exome capture kits and genome sequencing techniques. RESULTS: We compared three different widely used enrichment kits (Agilent SureSelect Human All Exon V5, Agilent SureSelect Human All Exon V7 and Twist Bioscience) as well as short-read and long-read WGS. We show that the Twist exome capture significantly improves complete coverage and coverage uniformity across coding regions compared to other exome capture kits. Twist performance is comparable to that of both short- and long-read whole genome sequencing. Additionally, we show that even at a reduced average coverage of 70× there is only minimal loss in sensitivity for SNV and CNV detection. CONCLUSION: We conclude that exome sequencing with Twist represents a significant improvement and could be performed at lower sequence coverage compared to other exome capture techniques.


Asunto(s)
Exoma , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Exoma/genética , Secuenciación del Exoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genoma Humano/genética , Secuencia de Bases , Variaciones en el Número de Copia de ADN/genética
7.
Ear Hear ; 45(6): 1542-1553, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38987893

RESUMEN

OBJECTIVES: Usher syndrome (USH), characterized by bilateral sensorineural hearing loss (SNHL) and retinitis pigmentosa (RP), prompts increased reliance on hearing due to progressive visual deterioration. It can be categorized into three subtypes: USH type 1 (USH1), characterized by severe to profound congenital SNHL, childhood-onset RP, and vestibular areflexia; USH type 2 (USH2), presenting with moderate to severe progressive SNHL and RP onset in the second decade, with or without vestibular dysfunction; and USH type 3 (USH3), featuring variable progressive SNHL beginning in childhood, variable RP onset, and diverse vestibular function. Previous studies evaluating cochlear implant (CI) outcomes in individuals with USH used varying or short follow-up durations, while others did not evaluate outcomes for each subtype separately. This study evaluates long-term CI performance in subjects with USH, at both short-term and long-term, considering each subtype separately. DESIGN: This retrospective, observational cohort study identified 36 CI recipients (53 ears) who were categorized into four different groups: early-implanted USH1 (first CI at ≤7 years of age), late-implanted USH1 (first CI at ≥8 years of age), USH2 and USH3. Phoneme scores at 65 dB SPL with CI were evaluated at 1 year, ≥2 years (mid-term), and ≥5 years postimplantation (long-term). Each subtype was analyzed separately due to the significant variability in phenotype observed among the three subtypes. RESULTS: Early-implanted USH1-subjects (N = 23 ears) achieved excellent long-term phoneme scores (100% [interquartile ranges {IQR} = 95 to 100]), with younger age at implantation significantly correlating with better CI outcomes. Simultaneously implanted subjects had significantly better outcomes than sequentially implanted subjects ( p = 0.028). Late-implanted USH1 subjects (N = 3 ears) used CI solely for sound detection and showed a mean phoneme discrimination score of 12% (IQR = 0 to 12), while still expressing satisfaction with ambient sound detection. In the USH2 group (N = 23 ears), a long-term mean phoneme score of 85% (IQR = 81 to 95) was found. Better outcomes were associated with younger age at implantation and higher preimplantation speech perception scores. USH3-subjects (N = 7 ears) achieved a mean postimplantation phoneme score of 71% (IQR = 45 to 91). CONCLUSIONS: This study is currently one of the largest and most comprehensive studies evaluating CI outcomes in individuals with USH, demonstrating that overall, individuals with USH benefit from CI at both short- and long-term follow-up. Due to the considerable variability in phenotype observed among the three subtypes, each subtype was analyzed separately, resulting in smaller sample sizes. For USH1 subjects, optimal CI outcomes are expected with early simultaneous bilateral implantation. Late implantation in USH1 provides signaling function, but achieved speech recognition is insufficient for oral communication. In USH2 and USH3, favorable CI outcomes are expected, especially if individuals exhibit sufficient speech recognition with hearing aids and receive ample auditory stimulation preimplantation. Early implantation is recommended for USH2, given the progressive nature of hearing loss and concomitant severe visual impairment. In comparison with USH2, predicting outcomes in USH3 remains challenging due to the variability found. Counseling for USH2 and USH3 should highlight early implantation benefits and encourage hearing aid use.


Asunto(s)
Implantación Coclear , Síndromes de Usher , Humanos , Síndromes de Usher/cirugía , Masculino , Femenino , Estudios Retrospectivos , Adulto , Niño , Persona de Mediana Edad , Adolescente , Adulto Joven , Resultado del Tratamiento , Preescolar , Percepción del Habla , Pérdida Auditiva Sensorineural/cirugía , Pérdida Auditiva Sensorineural/rehabilitación
8.
Prenat Diagn ; 44(11): 1304-1309, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38782597

RESUMEN

OBJECTIVE: Maternal cell contamination (MCC) poses a risk for misdiagnosis in prenatal genetic testing, and is examined in accredited diagnostic laboratories However, the awareness of possible MCC in perinatal/postnatal genetic testing, mainly of umbilical cord blood (CB), is lower. METHOD: We investigated the rate of MCC in DNA from both umbilical CB samples and umbilical cord samples that were sent to our diagnostic laboratory for diagnostic testing between 1995 and 2021 (n = 236). RESULTS: MCC was detected in 4% of umbilical CB samples, and in one umbilical cord sample. Particularly tests enriching for a specific variant are very sensitive for low amounts of MCC, as we emphasize here with a false positive diagnosis of myotonic dystrophy type 1 in a newborn. CONCLUSIONS: Overall, with appropriate collection and use, umbilical CB and umbilical cord samples are suitable for genetic testing based on the low rates of MCC and misdiagnosis. These findings do however underline the importance of routine MCC testing in umbilical CB samples and umbilical cord samples for both requesting clinicians and diagnostic genetic laboratories.


Asunto(s)
Errores Diagnósticos , Sangre Fetal , Humanos , Sangre Fetal/citología , Femenino , Embarazo , Errores Diagnósticos/estadística & datos numéricos , Recién Nacido , Pruebas Genéticas/métodos , Diagnóstico Prenatal/métodos , Diagnóstico Prenatal/estadística & datos numéricos , Contaminación de ADN
9.
Nucleic Acids Res ; 50(17): e97, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-35713566

RESUMEN

De novo mutations (DNMs) are an important cause of genetic disorders. The accurate identification of DNMs from sequencing data is therefore fundamental to rare disease research and diagnostics. Unfortunately, identifying reliable DNMs remains a major challenge due to sequence errors, uneven coverage, and mapping artifacts. Here, we developed a deep convolutional neural network (CNN) DNM caller (DeNovoCNN), that encodes the alignment of sequence reads for a trio as 160$ \times$164 resolution images. DeNovoCNN was trained on DNMs of 5616 whole exome sequencing (WES) trios achieving total 96.74% recall and 96.55% precision on the test dataset. We find that DeNovoCNN has increased recall/sensitivity and precision compared to existing DNM calling approaches (GATK, DeNovoGear, DeepTrio, Samtools) based on the Genome in a Bottle reference dataset and independent WES and WGS trios. Validations of DNMs based on Sanger and PacBio HiFi sequencing confirm that DeNovoCNN outperforms existing methods. Most importantly, our results suggest that DeNovoCNN is likely robust against different exome sequencing and analyses approaches, thereby allowing the application on other datasets. DeNovoCNN is freely available as a Docker container and can be run on existing alignment (BAM/CRAM) and variant calling (VCF) files from WES and WGS without a need for variant recalling.


Asunto(s)
Aprendizaje Profundo , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN , Secuenciación del Exoma/métodos
10.
J Genet Couns ; 32(2): 387-396, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36366912

RESUMEN

Unsolicited findings (UFs) from diagnostic genetic testing are a subject of debate. The emerging consensus is that some UFs from genetic testing should be disclosed, but recommendations on UF disclosure generally leave room for variation in practice. This study aimed to explore clinical geneticists' views on and experiences with UFs during pretest counseling and UF disclosure. We interviewed 20 certified clinical genetics medical specialists and clinical genetics residents, working in 7 Dutch genetic centers. Participants indicated that discussing the probability of detecting UFs is an integral part of pretest counseling and informed consent. However, they expressed doubts about the degree to which this discussion should occur and about what information they should share with patients. They argued that the contents of their counseling should depend on the individual patient's capacity to understand information. These results endorse the importance of tailored pretest counseling alongside informed consent for optimal genetic consultations. While "medical actionability" is broadly accepted as an important criterion for the disclosure of UFs, participants experienced substantial uncertainty regarding this concept. This study underscores the need for further demarcation of what exactly constitutes medical actionability. Installation of an expert panel to help healthcare professionals decide what variants to disclose will support them when facing the dilemmas presented by UFs.


Asunto(s)
Revelación , Pruebas Genéticas , Humanos , Consentimiento Informado , Asesoramiento Genético/psicología , Secuenciación de Nucleótidos de Alto Rendimiento
11.
Hum Mutat ; 43(8): 1041-1055, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35191116

RESUMEN

Massive parallel sequencing technology has become the predominant technique for genetic diagnostics and research. Many genetic laboratories have wrestled with the challenges of setting up genetic testing workflows based on a completely new technology. The learning curve we went through as a laboratory was accompanied by growing pains while we gained new knowledge and expertise. Here we discuss some important mistakes that have been made in our laboratory through 10 years of clinical exome sequencing but that have given us important new insights on how to adapt our working methods. We provide these examples and the lessons that we learned to help other laboratories avoid to make the same mistakes.


Asunto(s)
Exoma , Secuenciación de Nucleótidos de Alto Rendimiento , Exoma/genética , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Análisis de Secuencia de ADN/métodos , Secuenciación del Exoma
12.
Hum Genet ; 141(3-4): 465-484, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34410491

RESUMEN

Pathogenic variants in SLC26A4 have been associated with autosomal recessive hearing loss (arHL) and a unilateral or bilateral enlarged vestibular aqueduct (EVA). SLC26A4 is the second most frequently mutated gene in arHL. Despite the strong genotype-phenotype correlation, a significant part of cases remains genetically unresolved. In this study, we investigated a cohort of 28 Dutch index cases diagnosed with HL in combination with an EVA but without (M0) or with a single (M1) pathogenic variant in SLC26A4. To explore the missing heritability, we first determined the presence of the previously described EVA-associated haplotype (Caucasian EVA (CEVA)), characterized by 12 single nucleotide variants located upstream of SLC26A4. We found this haplotype and a delimited V1-CEVA haplotype to be significantly enriched in our M1 patient cohort (10/16 cases). The CEVA haplotype was also present in two M0 cases (2/12). Short- and long-read whole genome sequencing and optical genome mapping could not prioritize any of the variants present within the CEVA haplotype as the likely pathogenic defect. Short-read whole-genome sequencing of the six M1 cases without this haplotype and the two M0/CEVA cases only revealed previously overlooked or misinterpreted splice-altering SLC26A4 variants in two cases, who are now genetically explained. No deep-intronic or structural variants were identified in any of the M1 subjects. With this study, we have provided important insights that will pave the way for elucidating the missing heritability in M0 and M1 SLC26A4 cases. For pinpointing the pathogenic effect of the CEVA haplotype, additional analyses are required addressing defect(s) at the RNA, protein, or epigenetic level.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Pérdida Auditiva/genética , Pérdida Auditiva Sensorineural/genética , Humanos , Proteínas de Transporte de Membrana/genética , Mutación , Fenotipo , Transportadores de Sulfato/genética , Acueducto Vestibular/anomalías
13.
Hum Genet ; 141(11): 1723-1738, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35226187

RESUMEN

Usher syndrome (USH) is an autosomal recessively inherited disease characterized by sensorineural hearing loss (SNHL) and retinitis pigmentosa (RP) with or without vestibular dysfunction. It is highly heterogeneous both clinically and genetically. Recently, variants in the arylsulfatase G (ARSG) gene have been reported to underlie USH type IV. This distinct type of USH is characterized by late-onset RP with predominantly pericentral and macular changes, and late onset SNHL without vestibular dysfunction. In this study, we describe the USH type IV phenotype in three unrelated subjects. We identified three novel pathogenic variants, two novel likely pathogenic variants, and one previously described pathogenic variant in ARSG. Functional experiments indicated a loss of sulfatase activity of the mutant proteins. Our findings confirm that ARSG variants cause the newly defined USH type IV and support the proposed extension of the phenotypic USH classification.


Asunto(s)
Retinitis Pigmentosa , Síndromes de Usher , Arilsulfatasas , Humanos , Proteínas Mutantes , Retinitis Pigmentosa/genética , Sulfatasas , Síndromes de Usher/genética , Síndromes de Usher/metabolismo
14.
Am J Hum Genet ; 103(1): 74-88, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29961571

RESUMEN

In a Dutch consanguineous family with recessively inherited nonsyndromic hearing impairment (HI), homozygosity mapping combined with whole-exome sequencing revealed a MPZL2 homozygous truncating variant, c.72del (p.Ile24Metfs∗22). By screening a cohort of phenotype-matched subjects and a cohort of HI subjects in whom WES had been performed previously, we identified two additional families with biallelic truncating variants of MPZL2. Affected individuals demonstrated symmetric, progressive, mild to moderate sensorineural HI. Onset of HI was in the first decade, and high-frequency hearing was more severely affected. There was no vestibular involvement. MPZL2 encodes myelin protein zero-like 2, an adhesion molecule that mediates epithelial cell-cell interactions in several (developing) tissues. Involvement of MPZL2 in hearing was confirmed by audiometric evaluation of Mpzl2-mutant mice. These displayed early-onset progressive sensorineural HI that was more pronounced in the high frequencies. Histological analysis of adult mutant mice demonstrated an altered organization of outer hair cells and supporting cells and degeneration of the organ of Corti. In addition, we observed mild degeneration of spiral ganglion neurons, and this degeneration was most pronounced at the cochlear base. Although MPZL2 is known to function in cell adhesion in several tissues, no phenotypes other than HI were found to be associated with MPZL2 defects. This indicates that MPZL2 has a unique function in the inner ear. The present study suggests that deleterious variants of Mplz2/MPZL2 affect adhesion of the inner-ear epithelium and result in loss of structural integrity of the organ of Corti and progressive degeneration of hair cells, supporting cells, and spiral ganglion neurons.


Asunto(s)
Moléculas de Adhesión Celular/genética , Células Ciliadas Auditivas/patología , Pérdida Auditiva Sensorineural/genética , Audición/genética , Animales , Adhesión Celular/genética , Cóclea/patología , Sordera/genética , Epitelio/patología , Femenino , Homocigoto , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Neuronas/patología , Ganglio Espiral de la Cóclea/patología
15.
Genet Med ; 23(8): 1569-1573, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33846582

RESUMEN

PURPOSE: Expansions of a subset of short tandem repeats (STRs) have been implicated in approximately 30 different human genetic disorders. Despite extensive application of exome sequencing (ES) in routine diagnostic genetic testing, STRs are not routinely identified from these data. METHODS: We assessed diagnostic utility of STR analysis in exome sequencing by applying ExpansionHunter to 2,867 exomes from movement disorder patients and 35,228 other clinical exomes. RESULTS: We identified 38 movement disorder patients with a possible aberrant STR length. Validation by polymerase chain reaction (PCR) and/or repeat-primed PCR technologies confirmed the presence of aberrant expansion alleles for 13 (34%). For seven of these patients the genotype was compatible with the phenotypic description, resulting in a molecular diagnosis. We subsequently tested the remainder of our diagnostic ES cohort, including over 30 clinically and genetically heterogeneous disorders. Optimized manual curation yielded 167 samples with a likely aberrant STR length. Validations confirmed 93/167 (56%) aberrant expansion alleles, of which 48 were in the pathogenic range and 45 in the premutation range. CONCLUSION: Our work provides guidance for the implementation of STR analysis in clinical ES. Our results show that systematic STR evaluation may increase diagnostic ES yield by 0.2%, and recommend making STR evaluation a routine part of ES interpretation in genetic testing laboratories.


Asunto(s)
Exoma , Repeticiones de Microsatélite , Alelos , Exoma/genética , Genotipo , Humanos , Repeticiones de Microsatélite/genética , Reacción en Cadena de la Polimerasa
16.
Genet Med ; 23(6): 1125-1136, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33742171

RESUMEN

PURPOSE: Consanguineous couples are at increased risk of being heterozygous for the same autosomal recessive (AR) disorder(s), with a 25% risk of affected offspring as a consequence. Until recently, comprehensive preconception carrier testing (PCT) for AR disorders was unavailable in routine diagnostics. Here we developed and implemented such a test in routine clinical care. METHODS: We performed exome sequencing (ES) for 100 consanguineous couples. For each couple, rare variants that could give rise to biallelic variants in offspring were selected. These variants were subsequently filtered against a gene panel consisting of ~2,000 genes associated with known AR disorders (OMIM-based). Remaining variants were classified according to American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines, after which only likely pathogenic and pathogenic (class IV/V) variants, present in both partners, were reported. RESULTS: In 28 of 100 tested consanguineous couples (28%), likely pathogenic and pathogenic variants not previously known in the couple or their family were reported conferring 25% risk of affected offspring. CONCLUSION: ES-based PCT provides a powerful diagnostic tool to identify AR disease carrier status in consanguineous couples. Outcomes provided significant reproductive choices for a higher proportion of these couples than previous tests.


Asunto(s)
Exoma , Familia , Consanguinidad , Exoma/genética , Heterocigoto , Secuenciación del Exoma
17.
J Med Genet ; 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631815

RESUMEN

BACKGROUND: Hearing loss is one of the most prevalent disabilities worldwide, and has a significant impact on quality of life. The adult-onset type of the condition is highly heritable but the genetic causes are largely unknown, which is in contrast to childhood-onset hearing loss. METHODS: Family and cohort studies included exome sequencing and characterisation of the hearing phenotype. Ex vivo protein expression addressed the functional effect of a DNA variant. RESULTS: An in-frame deletion of 12 nucleotides in RIPOR2 was identified as a highly penetrant cause of adult-onset progressive hearing loss that segregated as an autosomal dominant trait in 12 families from the Netherlands. Hearing loss associated with the deletion in 63 subjects displayed variable audiometric characteristics and an average (SD) age of onset of 30.6 (14.9) years (range 0-70 years). A functional effect of the RIPOR2 variant was demonstrated by aberrant localisation of the mutant RIPOR2 in the stereocilia of cochlear hair cells and failure to rescue morphological defects in RIPOR2-deficient hair cells, in contrast to the wild-type protein. Strikingly, the RIPOR2 variant is present in 18 of 22 952 individuals not selected for hearing loss in the Southeast Netherlands. CONCLUSION: Collectively, the presented data demonstrate that an inherited form of adult-onset hearing loss is relatively common, with potentially thousands of individuals at risk in the Netherlands and beyond, which makes it an attractive target for developing a (genetic) therapy.

18.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203967

RESUMEN

A substantial proportion of subjects with autosomal recessive retinitis pigmentosa (arRP) or Usher syndrome type II (USH2) lacks a genetic diagnosis due to incomplete USH2A screening in the early days of genetic testing. These cases lack eligibility for optimal genetic counseling and future therapy. USH2A defects are the most frequent cause of USH2 and are also causative in individuals with arRP. Therefore, USH2A is an important target for genetic screening. The aim of this study was to assess unscreened or incompletely screened and unexplained USH2 and arRP cases for (likely) pathogenic USH2A variants. Molecular inversion probe (MIP)-based sequencing was performed for the USH2A exons and their flanking regions, as well as published deep-intronic variants. This was done to identify single nucleotide variants (SNVs) and copy number variants (CNVs) in 29 unscreened or partially pre-screened USH2 and 11 partially pre-screened arRP subjects. In 29 out of these 40 cases, two (likely) pathogenic variants were successfully identified. Four of the identified SNVs and one CNV were novel. One previously identified synonymous variant was demonstrated to affect pre-mRNA splicing. In conclusion, genetic diagnoses were obtained for a majority of cases, which confirms that MIP-based sequencing is an effective screening tool for USH2A. Seven unexplained cases were selected for future analysis with whole genome sequencing.


Asunto(s)
Análisis Costo-Beneficio , Exones/genética , Proteínas de la Matriz Extracelular/genética , Sondas Moleculares/metabolismo , Sitios de Empalme de ARN/genética , Retinitis Pigmentosa/genética , Análisis de Secuencia de ADN , Síndromes de Usher/genética , Secuencia de Bases , Variaciones en el Número de Copia de ADN/genética , Eliminación de Gen , Humanos , Polimorfismo de Nucleótido Simple/genética , Retinitis Pigmentosa/economía , Síndromes de Usher/economía
19.
Genet Med ; 22(4): 803-808, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31767986

RESUMEN

PURPOSE: Uniparental disomy (UPD) is the rare occurrence of two homologous chromosomes originating from the same parent and is typically identified by marker analysis or single-nucleotide polymorphism (SNP)-based microarrays. UPDs may lead to disease due to imprinting effects, underlying homozygous pathogenic variants, or low-level mosaic aneuploidies. In this study we detected clinically relevant UPD events in both trio and single exome sequencing (ES) data. METHODS: UPD was detected by applying a method based on Mendelian inheritance errors to a cohort of 4912 ES trios (all UPD types) and by using median absolute deviation-scaled regions of homozygosity to a cohort of 29,723 single ES samples (isodisomy only). RESULTS: As positive controls, we accurately identified three mixed UPD, three isodisomy, as well as two segmental UPD events that were all previously reported by SNP-based microarrays. In addition, we identified three segmental UPD and 11 isodisomy events. This resulted in a novel diagnosis based on imprinting for one patient, and adjusted genetic counseling for another patient. CONCLUSION: UPD can easily be identified using both single and trio ES and may be clinically relevant to patients. UPD analysis should become routine in clinical ES, because it increases the diagnostic yield and could affect genetic counseling.


Asunto(s)
Exoma , Disomía Uniparental , Exoma/genética , Homocigoto , Humanos , Polimorfismo de Nucleótido Simple/genética , Disomía Uniparental/genética , Secuenciación del Exoma
20.
Nature ; 511(7509): 344-7, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-24896178

RESUMEN

Severe intellectual disability (ID) occurs in 0.5% of newborns and is thought to be largely genetic in origin. The extensive genetic heterogeneity of this disorder requires a genome-wide detection of all types of genetic variation. Microarray studies and, more recently, exome sequencing have demonstrated the importance of de novo copy number variations (CNVs) and single-nucleotide variations (SNVs) in ID, but the majority of cases remain undiagnosed. Here we applied whole-genome sequencing to 50 patients with severe ID and their unaffected parents. All patients included had not received a molecular diagnosis after extensive genetic prescreening, including microarray-based CNV studies and exome sequencing. Notwithstanding this prescreening, 84 de novo SNVs affecting the coding region were identified, which showed a statistically significant enrichment of loss-of-function mutations as well as an enrichment for genes previously implicated in ID-related disorders. In addition, we identified eight de novo CNVs, including single-exon and intra-exonic deletions, as well as interchromosomal duplications. These CNVs affected known ID genes more frequently than expected. On the basis of diagnostic interpretation of all de novo variants, a conclusive genetic diagnosis was reached in 20 patients. Together with one compound heterozygous CNV causing disease in a recessive mode, this results in a diagnostic yield of 42% in this extensively studied cohort, and 62% as a cumulative estimate in an unselected cohort. These results suggest that de novo SNVs and CNVs affecting the coding region are a major cause of severe ID. Genome sequencing can be applied as a single genetic test to reliably identify and characterize the comprehensive spectrum of genetic variation, providing a genetic diagnosis in the majority of patients with severe ID.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Genoma Humano/genética , Discapacidad Intelectual/genética , Mutación/genética , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Cromosomas Humanos Par 4/genética , Cromosomas Humanos X/genética , Estudios de Cohortes , Duplicación de Gen/genética , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda