Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Small ; : e2310682, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109576

RESUMEN

Polymer nanocomposites exhibiting remarkable mechanical properties are a focus of research for decades in structural applications. However, their practical application faces challenges due to poor interfacial load transfer, nanofiller dispersion, and processing limitations. These issues are critical in achieving stiff, strong, lightweight, and structurally integrated materials. Additionally, they often suffer from predetermined properties, which may not be effective under specific loading conditions. Addressing these challenges, the development of design strategies for mechano-responsive materials has advanced, enabling self-adaptive properties that respond to various mechanical stimuli. Drawing inspiration from natural systems, these approaches have been implemented in synthetic material systems, leveraging the design flexibility of nanocomposites as needed. Key focus areas include exploring mechanoradical reactions for dynamic mechano-responsiveness, as well as utilizing biomimetic mineralization and mechanical training for self-strengthening. This work also examines multistability, enabling on-demand deformation of materials and structures. Recent advancements in viscoelastic damping and nonreciprocal materials are discussed, highlighting their potential for directional energy absorption, transmission, and vibration control. Despite the need for significant improvements for real-world applications, mechano-responsive polymers and nanocomposites are expected to offer enormous opportunities not only in structural applications but also in other fields such as biomedical engineering, energy harvesting, and soft robotics.

2.
Sci Rep ; 7(1): 18054, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29273810

RESUMEN

Biomass waste treatment and detrimental dye adsorption are two of the crucial environmental issues nowadays. In this study, we investigate to simultaneously resolve the aforementioned issues by synthesizing chitosan sponges as adsorbents toward rose bengal (RB) dye adsorption. Through a temperature-controlled freeze-casting process, robust and recyclable chitosan sponges are fabricated with hierarchical porosities resulted from the control of concentrations of chitosan solutions. Tested as the adsorbents for RB, to the best of our knowledge, the as-prepared chitosan sponge in this work reports the highest adsorption capacity of RB (601.5 mg/g) ever. The adsorption mechanism, isotherm, kinetics, and thermodynamics are comprehensively studied by employing statistical analysis. Importantly and desirably, the sponge type of chitosan adsorbents exceedingly facilitates the retrieving and elution of chitosan sponges for recyclable uses. Therefore, the chitosan sponge adsorbent is demonstrated to possess dramatically squeezable capability with durability for 10,000 cycles and recyclable adsorption for at least 10 cycles, which provides an efficient and economical way for both biomass treatment and water purification.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda