Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Can J Physiol Pharmacol ; 101(6): 294-303, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36999637

RESUMEN

Ascorbic acid has been suggested to regulate obesity in obese male rodents. Moreover, increased adipocyte size has been associated with metabolic disease. Thus, we investigated the effects of ascorbic acid on adipocyte hypertrophy and insulin resistance in high-fat diet (HFD)-induced obese ovariectomized (OVX) C57BL/6J mice, an animal model of obese postmenopausal women. Administration of ascorbic acid (5% w/w in diet for 18 weeks) reduced the size of visceral adipocytes without changes in body weight and adipose tissue mass in HFD-fed obese OVX mice compared with obese OVX mice that did not receive ascorbic acid. Ascorbic acid inhibited adipose tissue inflammation, as shown by the decreased number of crown-like structures and CD68-positive macrophages in visceral adipose tissues. Ascorbic acid-treated mice exhibited improved hyperglycemia, hyperinsulinemia, and glucose and insulin tolerance compared with nontreated obese mice. Pancreatic islet size and insulin-positive ß-cell area in ascorbic acid-treated obese OVX mice decreased to the levels observed in low-fat diet-fed lean mice. Ascorbic acid also suppressed pancreatic triglyceride accumulation in obese mice. These results suggest that ascorbic acid may reduce insulin resistance and pancreatic steatosis partly by suppressing visceral adipocyte hypertrophy and adipose tissue inflammation in obese OVX mice.


Asunto(s)
Resistencia a la Insulina , Enfermedades Pancreáticas , Masculino , Femenino , Animales , Ratones , Ratones Obesos , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Ácido Ascórbico/metabolismo , Ratones Endogámicos C57BL , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Adipocitos/metabolismo , Inflamación/metabolismo , Dieta Alta en Grasa/efectos adversos , Insulina/metabolismo , Enfermedades Pancreáticas/metabolismo , Hipertrofia/metabolismo
2.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917992

RESUMEN

Obesity is the result of an energy imbalance caused by an increased ratio of caloric intake to energy expenditure [...].


Asunto(s)
Obesidad/terapia , Biomarcadores , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Descubrimiento de Drogas , Humanos , Obesidad/etiología , Obesidad/metabolismo
3.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916086

RESUMEN

Fibrates, including fenofibrate, are a class of hypolipidemic drugs that activate peroxisome proliferator-activated receptor α (PPARα), which in-turn regulates the expression of lipid and lipoprotein metabolism genes. We investigated whether fenofibrate can reduce visceral obesity and nonalcoholic fatty liver disease via adipose tissue PPARα activation in female ovariectomized (OVX) C57BL/6J mice fed a high-fat diet (HFD), a mouse model of obese postmenopausal women. Fenofibrate reduced body weight gain (-38%, p < 0.05), visceral adipose tissue mass (-46%, p < 0.05), and visceral adipocyte size (-20%, p < 0.05) in HFD-fed obese OVX mice. In addition, plasma levels of alanine aminotransferase and aspartate aminotransferase, as well as free fatty acids, triglycerides, and total cholesterol, were decreased. Fenofibrate also inhibited hepatic lipid accumulation (-69%, p < 0.05) and infiltration of macrophages (-72%, p < 0.05), while concomitantly upregulating the expression of fatty acid ß-oxidation genes targeted by PPARα and decreasing macrophage infiltration and mRNA expression of inflammatory factors in visceral adipose tissue. These results suggest that fenofibrate inhibits visceral obesity, as well as hepatic steatosis and inflammation, in part through visceral adipose tissue PPARα activation in obese female OVX mice.


Asunto(s)
Dislipidemias/prevención & control , Hígado Graso/prevención & control , Fenofibrato/uso terapéutico , Hipolipemiantes/uso terapéutico , Obesidad Abdominal/prevención & control , Adipocitos/efectos de los fármacos , Animales , Dieta Alta en Grasa , Evaluación Preclínica de Medicamentos , Femenino , Fenofibrato/farmacología , Hipolipemiantes/farmacología , Grasa Intraabdominal/metabolismo , Ratones Endogámicos C57BL , Ovariectomía , PPAR gamma/metabolismo
4.
Int J Mol Sci ; 21(12)2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32549364

RESUMEN

Our previous studies demonstrated that peroxisome proliferator-activated receptor α (PPARα) activation reduces weight gain and improves insulin sensitivity in obese mice. Since excess lipid accumulation in non-adipose tissues is suggested to be responsible for the development of insulin resistance, this study was undertaken to examine whether the lemon balm extract ALS-L1023 regulates hepatic lipid accumulation, obesity, and insulin resistance and to determine whether its mechanism of action involves PPARα. Administration of ALS-L1023 to high-fat-diet-induced obese mice caused reductions in body weight gain, visceral fat mass, and visceral adipocyte size without changes of food consumption profiles. ALS-L1023 improved hyperglycemia, hyperinsulinemia, glucose and insulin tolerance, and normalized insulin-positive ß-cell area in obese mice. ALS-L1023 decreased hepatic lipid accumulation and concomitantly increased the expression of PPARα target genes responsible for fatty acid ß-oxidation in livers. In accordance with the in vivo data, ALS-L1023 reduced lipid accumulation and stimulated PPARα reporter gene expression in HepG2 cells. These effects of ALS-L1023 were comparable to those of the PPARα ligand fenofibrate, while the PPARα antagonist GW6471 inhibited the actions of ALS-L1023 on lipid accumulation and PPARα luciferase activity in HepG2 cells. Higher phosphorylated protein kinase B (pAkt)/Akt ratios and lower expression of gluconeogenesis genes were observed in the livers of ALS-L1023-treated mice. These results indicate that ALS-L1023 may inhibit obesity and improve insulin sensitivity in part through inhibition of hepatic lipid accumulation via hepatic PPARα activation.


Asunto(s)
Resistencia a la Insulina/genética , Hígado/metabolismo , Obesidad/tratamiento farmacológico , PPAR alfa/genética , Extractos Vegetales/administración & dosificación , Adipocitos/citología , Adipocitos/efectos de los fármacos , Animales , Tamaño de la Célula/efectos de los fármacos , Dieta Alta en Grasa , Células Hep G2 , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones Endogámicos C57BL , Obesidad/inducido químicamente , Obesidad/genética , Obesidad/metabolismo , PPAR alfa/metabolismo , Fosforilación/efectos de los fármacos , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo
5.
Molecules ; 25(19)2020 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-33020443

RESUMEN

Obesity is the result of an energy imbalance caused by an increased ratio of caloric intake to energy expenditure. In conjunction with obesity, related metabolic disorders, such as dyslipidemia, atherosclerosis, and type 2 diabetes, have become global health problems. Obesity progression is thought to be associated with angiogenesis and extracellular matrix (ECM) remodeling. Angiogenesis occurs in growing adult adipose tissues, which are similar to neoplastic tissues. Adipose tissue is highly vascularized, and each adipocyte is nourished by an extensive capillary network. Adipocytes produce proangiogenic factors, such as vascular endothelial growth factor A and fibroblast growth factor 2, which promote neovascularization within the adipose tissue. Furthermore, matrix metalloproteinases (MMPs), including MMP-2 and MMP-9, play important roles in adipose tissue development and microvessel maturation by modifying the ECM. Thus, modulation of angiogenesis and MMP activity provides a promising therapeutic approach for controlling human obesity and its related disorders. Over the past decade, there has been a great increase in the use of alternative treatments, such as herbal remedies, for these diseases. This review will focus on the role of angiogenesis in adipose tissue growth and the regulation of obesity by antiangiogenic herbal medicines.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Neovascularización Fisiológica/efectos de los fármacos , Obesidad , Fitoterapia , Plantas Medicinales , Humanos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Obesidad/patología
6.
Int J Obes (Lond) ; 43(8): 1620-1630, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30283077

RESUMEN

BACKGROUND/OBJECTIVES: Ascorbic acid is a known cofactor in the biosynthesis of carnitine, a molecule that has an obligatory role in fatty acid oxidation. Our previous studies have demonstrated that obesity is regulated effectively through peroxisome proliferator-activated receptor α (PPARα)-mediated fatty acid ß-oxidation. Thus, this study aimed to determine whether ascorbic acid can inhibit obesity and nonalcoholic fatty liver disease (NAFLD) in part through the actions of PPARα. DESIGN: After C57BL/6J mice received a low-fat diet (LFD, 10% kcal fat), a high-fat diet (HFD, 45% kcal fat), or the same HFD supplemented with ascorbic acid (1% w/w) (HFD-AA) for 15 weeks, variables and determinants of visceral obesity and NAFLD were examined using metabolic measurements, histology, and gene expression. RESULTS: Compared to HFD-fed obese mice, administration of HFD-AA to obese mice reduced body weight gain, visceral adipose tissue mass, and visceral adipocyte size without affecting food consumption profiles. Concomitantly, circulating ascorbic acid concentrations were significantly higher in HFD-AA mice than in HFD mice. Ascorbic acid supplementation increased the mRNA levels of PPARα and its target enzymes involved in fatty acid ß-oxidation in visceral adipose tissues. Consistent with the effects of ascorbic acid on visceral obesity, ascorbic acid not only inhibited hepatic steatosis but also increased the mRNA levels of PPARα-dependent fatty acid ß-oxidation genes in livers. Similarly, hepatic inflammation, fibrosis, and apoptosis were also decreased during ascorbic acid-induced inhibition of visceral obesity. In addition, serum levels of alanine aminotransferase, aspartate aminotransferase, total cholesterol, and LDL cholesterol were lower in HFD-AA-fed mice than in those of HFD-fed mice. CONCLUSIONS: These results suggest that ascorbic acid seems to suppress HFD-induced visceral obesity and NAFLD in part through the activation of PPARα.


Asunto(s)
Ácido Ascórbico/farmacología , Dieta Alta en Grasa , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad Abdominal/metabolismo , PPAR alfa/metabolismo , Animales , Ácido Ascórbico/antagonistas & inhibidores , Dieta con Restricción de Grasas , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Expresión Génica , Grasa Intraabdominal/efectos de los fármacos , Grasa Intraabdominal/patología , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad Abdominal/genética , Oxidación-Reducción/efectos de los fármacos , PPAR alfa/genética , Aumento de Peso/efectos de los fármacos
7.
Int J Mol Sci ; 18(4)2017 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-28420164

RESUMEN

Similar to neoplastic tissues, growth and development of adipose tissue are thought to be angiogenesis-dependent. Since visceral adipose tissue (VAT) is associated with development and progression of nonalcoholic fatty liver disease (NAFLD), we hypothesized that angiogenesis inhibition would attenuate obesity-induced NAFLD. We fed C57BL/6J mice a low-fat diet (LFD, chow 10% kcal fat), a high-fat diet (HFD, 45% kcal fat) or HFD supplemented with the lemon-balm extract ALS-L1023 (HFD-ALS) for 15 weeks. ALS-L1023 reduced endothelial cell-tube formation in vitro. HFD increased VAT angiogenesis and induced weight gains including body weight, VAT mass and visceral adipocyte size compared with LFD. However, HFD-ALS led to weight reductions without affecting calorie intake compared with HFD. HFD-ALS also reduced serum ALT and AST levels and improved lipid metabolism. HFD-ALS suppressed steatosis, infiltration of inflammatory cells, and accumulation of collagen in livers. HFD-ALS modulated hepatic expression of genes involved in lipid metabolism, inflammation, fibrosis, antioxidation, and apoptosis. Concomitantly, analysis of VAT function revealed that HFD-ALS led to fewer CD68-positive macrophage numbers and lower expression of inflammatory cytokines compared with HFD. Our findings show that the anti-angiogenic herbal extract ALS-L1023 attenuates NAFLD by targeting VAT during obesity, suggesting that angiogenesis inhibitors could aid in the treatment and prevention of obesity-induced human NAFLD.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Dieta Alta en Grasa/efectos adversos , Grasa Intraabdominal/efectos de los fármacos , Grasa Intraabdominal/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Extractos Vegetales/farmacología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Biomarcadores , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/sangre , Masculino , Melissa/química , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Tamaño de los Órganos/efectos de los fármacos , Extractos Vegetales/química , Hojas de la Planta/química
8.
Pharm Biol ; 53(2): 301-12, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25243869

RESUMEN

CONTEXT: The herbal composition Gyeongshingangjeehwan 18 (GGEx18) extracted from Rheum palmatum L. (Polygonaceae), Laminaria japonica Aresch (Laminariaceae), and Ephedra sinica Stapf (Ephedraceae) is traditionally used as an anti-obesity drug by local clinics in Korea. OBJECTIVE: This study investigates the effects of GGEx18 on visceral obesity and insulin resistance and determines the molecular mechanisms involved in this process. MATERIALS AND METHODS: After C57BL/6J mice were fed a high-fat diet supplemented with GGEx18 (125, 250, and 500 mg/kg) for 8 weeks and 3T3-L1 adipocytes were treated with GGEx18 (0.1, 1, and 10 µg/ml); variables and determinants of visceral obesity and insulin resistance were measured using in vivo and in vitro approaches. RESULTS: Administration of GGEx18 to obese mice decreased visceral adipose tissue weight with an ED50 value of 232 mg/kg. 3T3-L1 adipocytes treated with GGEx18 showed a reduction in lipid accumulation with an ED50 value of 0.7 µg/ml. GGEx18 significantly increased the expression of fatty acid oxidation genes, including adiponectin, AMPKs, PPARα and its target enzymes, and CPT-1, in both mesenteric adipose tissues and 3T3-L1 cells. However, GGEx18 treatment decreased the mRNA levels of adipocyte marker genes such as PPARγ, aP2, TNFα, and leptin. GGEx18 normalized hyperglycemia and hyperinsulinemia in obese mice. Blood glucose levels of GGEx18-treated mice were significantly reduced during oral glucose tolerance tests compared with obese controls. DISCUSSION AND CONCLUSION: These results suggest that GGEx18 may treat visceral obesity and visceral obesity-related insulin resistance by upregulating the visceral adipose expression of fatty acid oxidative genes.


Asunto(s)
Fármacos Antiobesidad/farmacología , Ephedra sinica/química , Ácidos Grasos/metabolismo , Expresión Génica/efectos de los fármacos , Resistencia a la Insulina , Grasa Intraabdominal/metabolismo , Laminaria/química , Obesidad Abdominal/tratamiento farmacológico , Preparaciones de Plantas/farmacología , Rheum/química , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/genética , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adiponectina/genética , Animales , Fármacos Antiobesidad/aislamiento & purificación , Tamaño de la Célula , Ácidos Grasos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad Abdominal/metabolismo , Oxidación-Reducción , Extractos Vegetales , Preparaciones de Plantas/aislamiento & purificación , Regulación hacia Arriba
9.
Nutr Diabetes ; 13(1): 19, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935669

RESUMEN

BACKGROUND: Fenofibrate is a hypolipidemic peroxisome proliferator-activated receptor α (PPARα) agonist used clinically to reduce hypercholesterolemia and hypertriglyceridemia. OBJECTIVE: We investigated the effects of fenofibrate on insulin resistance and tissue inflammation in a high-fat diet (HFD)-fed ovariectomized (OVX) C57BL/6J mice, a mouse model of obese postmenopausal women. METHODS: Female OVX mice were randomly divided into 3 groups and received a low-fat diet, an HFD, or an HFD supplemented with 0.05% (w/w) fenofibrate for 9 weeks. Parameters of insulin resistance and tissue inflammation were measured using blood analysis, histological analysis, immunohistochemistry, and quantitative real-time polymerase chain reaction. RESULTS: When fenofibrate was administered to HFD-fed OVX mice for 9 weeks, we observed reductions in body weight gain, adipose tissue mass, and the size of visceral adipocytes without the change of food intake. Fenofibrate improved mild hyperglycemia, severe hyperinsulinemia, and glucose tolerance in these mice. It also reduced pancreatic islet size and insulin-positive ß-cell area to levels similar to those in OVX mice fed a low-fat diet. Concomitantly, administration of fenofibrate not only suppressed pancreatic lipid accumulation but also decreased CD68-positive macrophages in both the pancreas and visceral adipose tissue. Treatment with fenofibrate reduced tumor necrosis factor α (TNFα) mRNA levels in adipose tissue and lowered serum TNFα levels. CONCLUSION: These results suggest that fenofibrate treatment attenuates insulin resistance in part by reducing tissue inflammation and TNFα expression in HFD-fed OVX mice.


Asunto(s)
Fenofibrato , Hiperlipidemias , Resistencia a la Insulina , Humanos , Femenino , Ratones , Animales , Fenofibrato/farmacología , Fenofibrato/uso terapéutico , Fenofibrato/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ratones Obesos , Hígado/metabolismo , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
10.
Biochem Biophys Res Commun ; 422(2): 263-7, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22575448

RESUMEN

Compound K, a novel ginsenoside metabolite formed by intestinal bacteria, is shown to inhibit angiogenesis and matrix metalloproteinase (MMP) activities. Since growth and development of adipose tissue are thought to require adipogenesis, angiogenesis, and extracellular matrix remodeling, we investigated whether compound K inhibits adipocyte differentiation and its potential mechanisms. Treatment of 3T3-L1 adipocytes with compound K inhibited lipid accumulation and expression of adipocyte-specific genes (i.e., PPARγ, leptin, aP2, and C/EBPα). Compound K decreased mRNA levels of angiogenic factors (i.e., VEGF-A and FGF-2) and MMPs (i.e., MMP-2 and MMP-9), whereas it increased mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) in 3T3-L1 cells. MMP-2 and MMP-9 activities were also decreased in compound K-treated cells. These results demonstrate that compound K effectively inhibited adipogenesis and that this process may be mediated in part through changes in the expression of genes involved in angiogenesis and MMP system. Thus, by suppressing adipogenesis, compound K likely has therapeutic potential for the treatment of obesity and related disorders.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Ginsenósidos/farmacología , Inhibidores de la Metaloproteinasa de la Matriz , Neovascularización Fisiológica/efectos de los fármacos , Células 3T3-L1 , Adipocitos/metabolismo , Adipogénesis/genética , Animales , Proteínas Potenciadoras de Unión a CCAAT/antagonistas & inhibidores , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas de Unión a Ácidos Grasos/antagonistas & inhibidores , Proteínas de Unión a Ácidos Grasos/genética , Factor 2 de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factor 2 de Crecimiento de Fibroblastos/biosíntesis , Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Ratones , Neovascularización Fisiológica/genética , PPAR gamma/antagonistas & inhibidores , PPAR gamma/genética , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/biosíntesis , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/biosíntesis
11.
Artículo en Inglés | MEDLINE | ID: mdl-23258984

RESUMEN

The growth and development of adipose tissue are believed to require adipogenesis, angiogenesis, and extracellular matrix remodeling. As our previous study revealed that ginseng reduces adipose tissue mass in part by decreasing matrix metalloproteinase (MMP) activity in obese mice, we hypothesized that adipogenesis can be inhibited by ginseng and its active components ginsenosides (GSs). Treatment of 3T3-L1 adipocytes with Korean red ginseng extract (GE) inhibited lipid accumulation and the expression of adipocyte-specific genes (PPARγ, C/EBPα, aP2, and leptin). GE decreased both the mRNA levels and activity of MMP-2 and MMP-9 in 3T3-L1 cells. These effects were further inhibited by total GSs (TGSs) and individual GSs. TGSs and individual GSs also significantly decreased MMP-2 and MMP-9 reporter gene activities in the presence of phorbol 12-myristate 13-acetate (PMA), the MMP inducer. Among the GSs, Rb1 most effectively inhibited MMP activity. In addition, PMA treatment attenuated the inhibitory actions of GE and GSs on adipogenesis. Moreover, GE and GSs reduced the expression of NF-κB and AP-1, the transcription factors of MMP-2 and MMP-9. These results demonstrate that ginseng, in particular GSs, effectively inhibits adipogenesis and that this process may be mediated in part through the suppression of MMP-2 and MMP-9. Thus, ginseng and GSs likely have therapeutic potential for controlling adipogenesis.

12.
Int J Sport Nutr Exerc Metab ; 22(1): 1-10, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22248494

RESUMEN

Ovariectomy leads to weight gain primarily in the form of adipose tissue in rodents. The authors investigated whether swimming improves ovariectomy-induced obesity through activation of peroxisome proliferator-activated receptor α (PPARα) in the skeletal muscle of female ovariectomized (OVX) mice, an animal model of postmenopausal women. Female mice were randomly divided into 3 groups (n=8/group): a sedentary sham-operated group, a sedentary OVX group, and a swim-trained OVX group. After mice were subjected to swim training or kept sedentary for 6 wk, the authors studied the effects of swimming on not only bodyweight gain, white adipose tissue (WAT) mass, adipocyte size, and skeletal-muscle lipid accumulation but also the expression of skeletal-muscle PPARα target genes. Sedentary OVX mice had significantly higher body weight and WAT than sedentary sham mice. However, swim training reduced body-weight gain, WAT mass, and adipocyte size of OVX mice. Swim-trained OVX mice had significantly lower levels of serum triglycerides and total cholesterol than sedentary OVX mice. Lipid accumulation in skeletal muscle was also markedly decreased by swimming. Concomitantly, swim training significantly increased mRNA levels of skeletal-muscle PPARα and its target enzymes, as well as uncoupling protein 3 (UCP3) responsible for fatty-acid oxidation. These results suggest that swimming can effectively prevent weight gain, adiposity, adipocyte hypertrophy, and lipid disorders caused by ovariectomy, in part through the activation of PPARα and UCP3, in the skeletal muscle of female mice and may contribute to the alleviation of metabolic syndrome, including obesity, hyperlipidemia, and Type 2 diabetes in postmenopausal women.


Asunto(s)
Actividad Motora , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Obesidad/prevención & control , PPAR alfa/metabolismo , Posmenopausia , Regulación hacia Arriba , Adipocitos Blancos/patología , Tejido Adiposo Blanco/patología , Adiposidad , Animales , Tamaño de la Célula , Femenino , Hiperlipidemias/etiología , Hiperlipidemias/prevención & control , Canales Iónicos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/patología , Obesidad/patología , Obesidad/fisiopatología , Ovariectomía/efectos adversos , PPAR alfa/genética , ARN Mensajero/metabolismo , Distribución Aleatoria , Natación , Proteína Desacopladora 3
13.
Pharm Biol ; 50(10): 1261-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22870903

RESUMEN

CONTEXT: The activation of peroxisome proliferator-activated receptor α (PPARα) target genes promotes hepatic oxidation of fatty acids. We hypothesized that Gyeongshingangjeehwan 18 (GGEx18), a mixture of three herbs, Laminaria japonica Aresch (Laminariaceae), Rheum palmatum L. (Polygonaceae), and Ephedra sinica Stapf (Ephedraceae), can regulate high-fat diet-induced hepatic steatosis through PPARα activation in the liver. OBJECTIVE: To investigate the effects of GGEx18 on obesity-related hepatic steatosis and the responsible mechanism. MATERIALS AND METHODS: The effects of GGEx18 on hepatic lipid accumulation, serum lipid profiles, and the expression of PPARα target genes were studied in high-fat diet-induced obese mice. The effects of GGEx18 on the expression of the PPARα targets and PPARα reporter gene activation were measured in NMu2Li liver cells. RESULTS: GGEx18 administration to obese mice for 9 weeks markedly (p<0.05) decreased hepatic lipid accumulation compared with that in obese control mice. Serum triglyceride and total cholesterol levels were significantly (p <0.05) decreased by GGEx18. GGEx18 treatment increased the messenger RNA levels of PPARα target genes, which are responsible for fatty acid oxidation, in liver tissues. Consistent with the in vivo data, similar activation of genes was observed in GGEx18-treated NMu2Li liver cells. GGEx18 also elevated PPARα reporter gene expression in NMu2Li cells. DISCUSSION AND CONCLUSION: These results suggest that GGEx18 prevents hepatic steatosis and hyperlipidemia in high-fat diet-induced obese mice, and this process may be mediated through PPARα activation in the liver.


Asunto(s)
Hígado Graso/prevención & control , Obesidad/tratamiento farmacológico , PPAR alfa/metabolismo , Preparaciones de Plantas/farmacología , Animales , Fármacos Antiobesidad/farmacología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Hígado Graso/etiología , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros/efectos de los fármacos , Hiperlipidemias/prevención & control , Lípidos/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Obesidad/complicaciones , Obesidad/etiología , PPAR alfa/genética , Extractos Vegetales , ARN Mensajero/metabolismo
14.
Pharm Biol ; 50(4): 506-15, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22129093

RESUMEN

CONTEXT: Since AMP-activated protein kinase (AMPK) activation in skeletal muscle of obese rodents stimulates fatty acid oxidation, it is reasonable to hypothesize that pharmacological activation of AMPK might be of therapeutic benefit in obesity. OBJECTIVE: To investigate the effects of the traditional Korean anti-obesity drug GGEx18, a mixture of three herbs, Laminaria japonica Aresch (Laminariaceae), Rheum palmatum L. (Polygonaceae), and Ephedra sinica Stapf (Ephedraceae), on obesity and the involvement of AMPK in this process. MATERIALS AND METHODS: After high fat diet-induced obese mice were treated with GGEx18, we studied the effects of GGEx18 on body weight, fat mass, skeletal muscle lipid accumulation, and the expressions of AMPK, peroxisome proliferator-activated receptor ά (PPARα), and PPARα target genes. The effects of GGEx18 and/or the AMPK inhibitor compound C on lipid accumulation and expression of the above genes were measured in C2C12 skeletal muscle cells. RESULTS: Administration of GGEx18 to obese mice for 9 weeks significantly (p < 0.05) decreased body and adipose tissue weights compared with obese control mice (p < 0.05). Lipid accumulation in skeletal muscle was inhibited by GGEx18. GGEx18 significantly (p < 0.05) increased skeletal muscle mRNA levels of AMPKα1 and AMPKα2 as well as PPARα and its target genes. Consistent with the in vivo data, GGEx18 inhibited lipid accumulation, and similar activation of genes was observed in GGEx18-treated C2C12 cells. However, compound C inhibited these effects in C2C12 cells. DISCUSSION AND CONCLUSION: These results suggest that GGEx18 improves obesity through skeletal muscle AMPK and AMPK-stimulated expression of PPARα and its target enzymes for fatty acid oxidation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Fármacos Antiobesidad/farmacología , Ephedra sinica , Laminaria , Músculo Esquelético/efectos de los fármacos , Obesidad/tratamiento farmacológico , PPAR alfa/metabolismo , Preparaciones de Plantas/farmacología , Rheum , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Adiposidad/efectos de los fármacos , Animales , Fármacos Antiobesidad/química , Línea Celular , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/enzimología , Obesidad/enzimología , Obesidad/etiología , Obesidad/genética , Obesidad/fisiopatología , PPAR alfa/genética , Extractos Vegetales , Preparaciones de Plantas/química , Plantas Medicinales , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Pérdida de Peso/efectos de los fármacos
15.
Acta Pharmacol Sin ; 32(2): 230-8, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21293475

RESUMEN

AIM: To investigate the molecular interaction of peroxisome proliferator-activated receptor γ (PPARγ) with 17ß-estradiol (E) in the regulation of adipogenesis. METHODS: Female ovariectomized (OVX) mice and differentiated 3T3-L1 adipocytes were treated with combinations of the PPARγ agonist troglitazone or E, and the variables and determinants of adipogenesis were measured using in vivo and in vitro approaches. RESULTS: Troglitazone (250 mg·kg(-1)·d(-1) for 13 weeks) decreased the size of adipocytes without the change in white adipose tissue (WAT) mass and increased the expression of adipocyte-specific genes, such as PPARγ, adipocyte fatty acid binding protein, and lipoprotein lipase, compared with OVX control mice. E (0.05 mg/pellet, sc implanted) significantly reduced WAT mass, adipocyte size, and adipose marker gene expression. When mice were concomitantly treated with troglitazone and E, E blunted the effects of troglitazone on WAT mass, adipocyte size, and adipose PPARγ target gene expression. Consistent with the in vivo data, E (10 µmol/L) treatment inhibited lipid accumulation and the expression of adipocyte-specific genes caused by troglitazone (10 µmol/L) in 3T3-L1 cells. E (10 µmol/L) also decreased troglitazone-induced PPARγ reporter activity through both estrogen receptor (ER) α and ERß. Mechanistic studies indicated that E (0.1 µmol/L) decreased the DNA binding of PPARγ induced by troglitazone (1 µmol/L) and inhibited the recruitment of the PPARγ coactivator CREB-binding protein. CONCLUSION: These results suggest that in vivo and in vitro treatment of E interferes with the actions of PPARγ on adipogenesis by down-regulating adipogenesis-related genes, which are mediated through the inhibition of PPARγ coactivator recruitment. In addition, it is likely that the activities of PPARγ activators may be enhanced in estrogen-deficient states.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Estradiol/farmacología , PPAR gamma/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Cromanos/farmacología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Estradiol/administración & dosificación , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ovariectomía , PPAR gamma/agonistas , Tiazolidinedionas/farmacología , Troglitazona
16.
Pharm Biol ; 49(6): 614-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21554004

RESUMEN

CONTEXT: The growth and development of adipose tissue leading to obesity is suggested to depend on angiogenesis. Our previous study showed that Melissa officinalis L. (Labiatae), Morus alba L. (Moraceae), and Artemisia capillaris Thunb. (Compositae) are involved in the regulation of angiogenesis. We hypothesized that Ob-X, a mixture of three herbs, M. alba, M. officinalis, and A. capillaris, can regulate obesity. OBJECTIVE: To investigate the inhibitory effect of Ob-X on obesity in genetically obese ob/ob mice. MATERIALS AND METHODS: The effect of Ob-X on angiogenesis was measured using a mouse Matrigel plug assay. The effects of Ob-X on obesity were investigated in ob/ob mice. RESULTS: Ob-X inhibited angiogenesis in a dose-dependent manner, as evidenced by decreased blood vessel density in a mouse matrigel plug assay. Administration of Ob-X to ob/ob mice for 5 weeks produced a significant reduction in body weight gain by 27% compared with control (12.1 ± 3.01 vs. 16.6 ± 2.24 g, respectively). Ob-X also significantly decreased visceral adipose tissue mass by 15% (0.87 ± 0.12 vs. 1.02 ± 0.15 g, respectively). The size of adipocytes in visceral adipose tissue was reduced by 46% in Ob-X-treated mice. Ob-X treatment inhibited hepatic lipid accumulation and significantly decreased circulating glucose levels compared with controls (197 ± 56.5 vs. 365 ± 115 mg/dL, respectively). DISCUSSION AND CONCLUSION: These results suggest that Ob-X, which has an anti-angiogenic activity, reduces body weight gain and visceral adipose tissue mass in genetically obese mice, providing evidence that obesity can be prevented by angiogenesis inhibitors.


Asunto(s)
Artemisia/química , Melissa/química , Morus/química , Neovascularización Patológica/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Fitoterapia/métodos , Extractos Vegetales/uso terapéutico , Plantas Medicinales/química , Adipocitos/efectos de los fármacos , Animales , Glucemia/metabolismo , Relación Dosis-Respuesta a Droga , Grasa Intraabdominal/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/sangre , Obesidad/genética , Extractos Vegetales/química , Extractos Vegetales/farmacología , Aumento de Peso/efectos de los fármacos
17.
Pharm Biol ; 49(8): 775-83, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21449830

RESUMEN

CONTEXT: Growing adipose tissue is thought to require adipogenesis, angiogenesis, and extracellular matrix (ECM) remodeling. Close examination of developing adipose tissue microvasculature reveals that angiogenesis often precedes adipogenesis. Since our previous study demonstrated that Ob-X, the anti-angiogenic herbal composition composed of Melissa officinalis L. (Labiatae), Morus alba L. (Moraceae), and Artemisia capillaris Thunb. (Compositae), reduced adipose tissue mass in obese mice, we hypothesized that adipogenesis can be inhibited by Ob-X. OBJECTIVE: To investigate the effects of the anti-angiogenic herbal extracts Ob-X on adipogenesis in 3T3-L1 adipocytes. MATERIALS AND METHODS: After differentiated 3T3-L1 adipocytes were treated with Ob-X, we studied the effects of Ob-X on triglyceride accumulation and expression of genes involved in adipogenesis, angiogenesis, and ECM remodeling. RESULTS: Treatment of cells with Ob-X inhibited lipid accumulation and adipocyte-specific gene expression caused by troglitazone or monocyte differentiation-inducing (MDI) mix. Ob-X reduced mRNA levels of angiogenic factors (vascular endothelial growth factor-A, -B, -C, -D, and fibroblast growth factor-2) and matrix metalloproteinases (MMPs; MMP-2 and MMP-9), whereas it increased mRNA levels of angiogenic inhibitors [(thrombospondin-1, tissue inhibitor of metalloproteinase-1 (TIMP-1), and TIMP-2)] in differentiated cells. MMP-2 and MMP-9 activities were also decreased in Ob-X-treated cells. DISCUSSION AND CONCLUSION: These results suggest that the anti-angiogenic herbal composition Ob-X inhibits differentiation of preadipocytes into adipocytes. These events may be mediated by changes in the expression of genes involved in lipogenesis, angiogenesis, and the MMP system. Thus, by reducing adipogenesis, anti-angiogenic Ob-X provides a possible therapeutic approach for the prevention and treatment of human obesity and its related disorders.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Artemisia , Melissa , Morus , Extractos Vegetales/farmacología , Células 3T3-L1 , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Tejido Adiposo/irrigación sanguínea , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/crecimiento & desarrollo , Inductores de la Angiogénesis/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Expresión Génica/efectos de los fármacos , Humanos , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Obesos , Obesidad/tratamiento farmacológico , Obesidad/fisiopatología , Obesidad/prevención & control , Fitoterapia , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética
18.
J Ethnopharmacol ; 264: 113360, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32918993

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Melissa officinalis L. (Labiatae; lemon balm) is a traditional medicinal plant with hypoglycemic and hypolipidemic effects; however, how it imparts its beneficial effects remains unclear. We thus hypothesized that the herbal extract ALS-L1023, isolated from Melissa officinalis, inhibits obesity and diabetes, and tested our hypothesis using Otsuka Long-Evans Tokushima fatty (OLETF) rats, which are an established animal model of type 2 diabetes. MATERIALS AND METHODS: In this study, 28-week-old OLETF rats were fed a high-fat diet for 4 weeks to induce a marked impairment of the insulin response and were treated with or without ALS-L1023. Subsequently, the variables and determinants of glucose metabolism and pancreatic function were assessed via blood analysis, histology, immunohistochemistry, and real-time polymerase chain reaction. RESULTS: The administration of ALS-L1023 resulted in a weight reduction without changes in food intake. It also markedly inhibited hyperglycemia and hypoinsulinemia, and restored ß-cell mass that was severely impaired in OLETF rats. There was a decrease in lipid accumulation in the liver and skeletal muscle of the obese rats after treatment with ALS-L1023. Concomitantly, there was an increase in the expression levels of fatty acid-oxidizing enzymes (AMPKα2, ACOX, MCAD, and VLCAD) in the liver and skeletal muscle after ALS-L1023 treatment. Furthermore, ALS-L1023 attenuated the pancreatic inflammation including the infiltration of CD68-positive macrophages and mast cells, in addition to attenuating the expression of inflammatory factors (IL-6 and CD68). CONCLUSIONS: These results suggest that treatment with ALS-L1023 may reduce weight gain, elevated glucose levels, and ß-cell loss, by changing the expression of fatty acid-oxidizing enzymes in the liver and skeletal muscle, including inflammatory factors in the pancreas. These findings indicate that ALS-L1023 may be an effective therapeutic strategy to treat human obesity and type 2 diabetes.


Asunto(s)
Glucemia/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Melissa , Obesidad/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Aumento de Peso/efectos de los fármacos , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2 , Dieta Alta en Grasa/efectos adversos , Relación Dosis-Respuesta a Droga , Células Secretoras de Insulina/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/fisiología , Obesidad/etiología , Obesidad/metabolismo , Extractos Vegetales/farmacología , Ratas , Ratas Endogámicas OLETF , Ratas Long-Evans , Aumento de Peso/fisiología
19.
J Ethnopharmacol ; 253: 112646, 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32027997

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Melissa officinalis L. (Labiatae; lemon balm) has traditionally been used as a medicinal herb to treat stress, anxiety, and insomnia. Current reports suggest that not only chronic stress stimulates angiogenesis, but angiogenesis also regulates adipogenesis and obesity. Because the herbal extract ALS-L1023 from Melissa officinalis inhibits angiogenesis, we hypothesized that ALS-L1023 could suppress visceral obesity and insulin resistance in obese female C57BL/6J mice, a mouse model of obese premenopausal women. MATERIALS AND METHODS: The mice were grouped and fed for 16 weeks as follows: 1) low-fat diet (LFD), 2) high-fat diet (HFD), or 3) HFD supplemented with 0.4 or 0.8% ALS-L1023. Variables and determinants of visceral obesity, insulin resistance, and pancreatic dysfunction were then assessed via blood analysis, histology, immunohistochemistry, and real-time polymerase chain reaction. RESULTS: ALS-L1023 decreased weight gain, visceral adipocyte size, and serum lipid levels in HFD-fed obese mice. ALS-L1023 also normalized hyperglycemia and hyperinsulinemia and concomitantly reduced blood glucose levels during oral glucose tolerance tests. The pancreatic islet size and insulin-positive ß-cell area were significantly reduced in ALS-L1023-treated mice compared with untreated obese controls, reaching a level similar to that of LFD-fed lean mice. ALS-L1023 suppressed pancreatic lipid accumulation, infiltration of inflammatory cells, and collagen levels. ALS-L1023 treatment altered the pancreatic expression of genes involved in steatosis, inflammation, and fibrosis. CONCLUSIONS: Our findings indicate that the herbal extract ALS-L1023 from Melissa officinalis not only inhibits visceral obesity, but also attenuates the increased fasting blood glucose, impaired glucose tolerance, and pancreatic dysfunction seen in female obese mice. These results suggest that ALS-L1023 may be effective in the prevention of visceral obesity and insulin resistance in obese premenopausal women.


Asunto(s)
Fármacos Antiobesidad/uso terapéutico , Melissa , Obesidad Abdominal/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Adipocitos/efectos de los fármacos , Adipocitos/patología , Animales , Glucemia/análisis , Ácidos Grasos no Esterificados/sangre , Femenino , Fibrosis , Resistencia a la Insulina , Ratones Endogámicos C57BL , Obesidad Abdominal/sangre , Obesidad Abdominal/patología , Páncreas/efectos de los fármacos , Páncreas/patología , Triglicéridos/sangre
20.
Exp Mol Med ; 41(6): 397-405, 2009 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-19322024

RESUMEN

Peroxisome proliferator-activated receptor alpha (PPARalpha) activation in rodents is thought to improve insulin sensitivity by decreasing ectopic lipids in non-adipose tissues. Fenofibrate, a lipid-modifying agent that acts as a PPARalpha agonist, may prevent adipocyte hypertrophy and insulin resistance by increasing intracellular lipolysis from adipose tissue. Consistent with this hypothesis, fenofibrate decreased visceral fat mass and adipocyte size in high fat diet-fed obese mice, and concomitantly increased the expression of PPARalpha target genes involved in fatty acid beta-oxidation in both epididymal adipose tissue and differentiated 3T3-L1 adipocytes. However, mRNA levels of adipose marker genes, such as leptin and TNFalpha, were decreased in epididymal adipose tissue by fenofibrate treatment. Fenofibrate not only reduced circulating levels of free fatty acids and triglycerides, but also normalized hyperinsulinemia and hyperglycemia in obese mice. Blood glucose levels of fenofibrate-treated mice were significantly reduced during intraperitoneal glucose tolerance test compared with obese controls. These results suggest that fenofibrate-induced fatty acid beta-oxidation in visceral adipose tissue may be one of the major factors leading to decreased adipocyte size and improved insulin sensitivity.


Asunto(s)
Adipocitos/efectos de los fármacos , Aumento de la Célula/efectos de los fármacos , Fenofibrato/farmacología , Hipolipemiantes/farmacología , Resistencia a la Insulina , PPAR alfa/metabolismo , Células 3T3 , Adipocitos/citología , Animales , Glucemia , Peso Corporal , Grasas de la Dieta , Regulación de la Expresión Génica/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Leptina/genética , Lípidos/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Factor de Necrosis Tumoral alfa/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda