Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
IEEE Sens Lett ; 8(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38756421

RESUMEN

This paper presents a novel method for solving the inverse kinematic problem of capturing human reaching movements using a dynamic biomechanical model. The model consists of rigid segments connected by joints and actuated by markers. The method was validated against a rotation matrix-based method using motion capture data recorded during reaching movements performed by healthy human volunteers. The results showed that the proposed method achieved low errors in joint angles and compensated for noise in motion capture data. The angles were comparable to those calculated using the standard marker-based method. The proposed bioinspired method can be used in real-time medical applications for processing noisy marker data with occlusions.

2.
J Vis Exp ; (203)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38284543

RESUMEN

The ability to move allows us to interact with the world. When this ability is impaired, it can significantly reduce one's quality of life and independence and may lead to complications. The importance of remote patient evaluation and rehabilitation has recently grown due to limited access to in-person services. For example, the COVID-19 pandemic unexpectedly resulted in strict regulations, reducing access to non-emergent healthcare services. Additionally, remote care offers an opportunity to address healthcare disparities in rural, underserved, and low-income areas where access to services remains limited. Improving accessibility through remote care options would limit the number of hospital or specialist visits and render routine care more affordable. Finally, the use of readily available commercial consumer electronics for at-home care can enhance patient outcomes due to improved quantitative observation of symptoms, treatment efficacy, and therapy dosage. While remote care is a promising means to address these issues, there is a crucial need to quantitatively characterize motor impairment for such applications. The following protocol seeks to address this knowledge gap to enable clinicians and researchers to obtain high-resolution data on complex movement and underlying muscle activity. The ultimate goal is to develop a protocol for remote administration of functional clinical tests. Here, participants were instructed to perform a medically-inspired Box and Block task (BBT), which is frequently used to assess hand function. This task requires subjects to transport standardized cubes between two compartments separated by a barrier. We implemented a modified BBT in virtual reality to demonstrate the potential of developing remote assessment protocols. Muscle activation was captured for each subject using surface electromyography. This protocol allowed for the acquisition of high-quality data to better characterize movement impairment in a detailed and quantitative manner. Ultimately, these data have the potential to be used to develop protocols for virtual rehabilitation and remote patient monitoring.


Asunto(s)
COVID-19 , Pandemias , Humanos , Calidad de Vida , Resultado del Tratamiento
3.
Int IEEE EMBS Conf Neural Eng ; 2021: 751-754, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34211636

RESUMEN

Musculoskeletal modeling is a new computational tool to reverse engineer human control systems, which require efficient algorithms running in real-time. Human hand pronation-supination movement is accomplished by movement of the radius and ulna bones relative to each other via the complex proximal and distal radioulnar joints, each with multiple degrees of freedom (DOFs). Here, we report two simplified models of this complex kinematic transformation implemented as a part of a 20 DOF model of the hand and forearm. The pronation/supination DOF was implemented as a single rotation joint either within the forearm segment or separating proximal and distal parts of the forearm segment. Torques produced by the inverse dynamic simulations with anatomical architecture of the forearm (OpenSim model) were used as the "gold standard" in the comparison of two simple models. Joint placement was iteratively optimized to achieve the closest representation of torques during realistic hand movements. The model with a split forearm segment performed better than the model with a solid forearm segment in simulating pronation/supination torques. We conclude that simplifying pronation/supination DOF as a single-axis rotation between arm segments is a viable strategy to reduce the complexity of multi-DOF dynamic simulations.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda