Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Neuroimage ; 69: 21-34, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23266698

RESUMEN

The act of opening (or closing) one's eyes has long been demonstrated to impact on brain function. However, the eyes open condition is usually accompanied by visual input, and this effect may have been a significant confounding factor in previous studies. To clarify this situation, we extended the traditional eyes open/closed study to a two-factor balanced, repeated measures resting state fMRI (rs-fMRI) experiment, in which light on/off was also included as a factor. In 16 healthy participants, we estimated the univariate properties of the BOLD signal, as well as a bivariate measure of functional connectivity and multivariate network topology measures. Across all these measures, we demonstrate that human brain adopts a distinctive configuration when eyes are open (compared to when eyes are closed) independently of exogenous light input: (i) the eyes open states were associated with decreased BOLD signal variance (P-value=0.0004), decreased fractional amplitude of low frequency fluctuation (fALFF. P-value=0.0061), and decreased Hurst exponent (H. P-value=0.0321) mainly in the primary and secondary sensory cortical areas, the insula, and the thalamus. (ii) The strength of functional connectivity (FC) between the posterior cingulate cortex (PCC), a major component of the default mode network (DMN), and the bilateral perisylvian and perirolandic regions was also significantly decreased during eyes open states. (iii) On the other hand, the average network connection distance increased during eyes open states (P-value=0.0139). Additionally, the metrics of univariate, bivariate, and multivariate analyses in this study are significantly correlated. In short, we have shown that the marked effects on the dynamics and connectivity of fMRI time series brought by volitional eyes open or closed are simply endogenous and irrespective of exogenous visual stimulus. The state of eyes open (or closed) may thus be an important factor to control in design of rs-fMRI and even other cognitive block or event-related experiments.


Asunto(s)
Mapeo Encefálico , Encéfalo/fisiología , Ojo , Vías Nerviosas/fisiología , Adulto , Oscuridad , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Luz , Imagen por Resonancia Magnética , Masculino
2.
J Neurosci Methods ; 344: 108829, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32663550

RESUMEN

BACKGROUND: Anatomically and physiologically, there is strong relationship between the brain and body. A new MRI platform covering both the brain and the limb would be beneficial for a more thorough understanding of the brain-body interactions. NEW METHOD: A new arm-over-head (AOH) position was developed to collect MRI of the brain and one arm simultaneously. Subject's tolerability and SNR of both the brain and limb under a serial of seven different TR (250-3000 ms) were tested. Then, blocked motor imagery tasks were performed to test the possible brain-body oscillations. RESULTS: The new MRI position provided structural images with good quality, and the AOH position had the best SNR under TR 3000 ms (p = 0.03 for the brain; p = 0.064 for the limb). Then, by using both hypothesis-free independent component analysis (ICA) and a priori seed-based functional connectivity (FC) analysis, it is demonstrated during motionless motor imagery tasks there existed possible brain-body BOLD oscillations connecting especially arm flexors to default mode, vision, and sensorimotor networks. The FC appeared at network density as low as 5%. COMPARISON WITH EXISTING METHODS: We have developed a new MRI subject position to explore the possibilities of more extensive neuronal and physiological networks. CONCLUSIONS: The results of this preliminary experiment indicate that functional brain networks might extend outside the brain. A bottom-up circulatory effect might explain this phenomenon. Nonetheless, considering the mechanism of neural top-down control and the nature of complex brain networks, the existence of a more extensive whole-body functional network is rational and possible.


Asunto(s)
Mapeo Encefálico , Encéfalo , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda