Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Photosynth Res ; 149(1-2): 41-55, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32902777

RESUMEN

Increasing amounts of experimental evidence show that anthocyanins provide physiological protection to plants under stress. However, the difference in photoprotection mediated by anthocyanins and other photoprotective substances in different seasons is still uncertain. To determine the relationship between anthocyanin accumulation and the photoprotective effects in different seasons, Castanopsis chinensis and Acmena acuminatissima, whose anthocyanin accumulation patterns differ in different seasons, were used as materials to explain how plants adapt to different seasons; as such, their physiological and biochemical responses were analyzed. Young leaves of C. chinensis and A. acuminatissima presented different colors in the different seasons. In summer, the young leaves of C. chinensis were purplish red, while those of A. acuminatissima were light green. In winter, the young leaves of C. chinensis were light green, while those of A. acuminatissima were red. Compared with the young red leaves, the young light green leaves that did not accumulate anthocyanins had higher flavonoid and phenolics contents, total antioxidant capacity, non-photochemical quenching (NPQ), and relative membrane leakage, and a slower recovery rate in the maximum photochemical efficiency (Fv/Fm) after high-light treatment. In addition, the net photosynthesis rate (Pn), transpiration rate (Tr), stomatal conductance (gs), and the effective quantum yield of PSII (ΦPSII) of the young leaves in winter were significantly lower than those in summer, while the activities of catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), and superoxide dismutase (SOD, EC 1.15.1.1) were significantly higher than those in summer. These data indicate that to adapt to seasonal changes anthocyanins, other antioxidative substances and antioxidative enzymes, as well as components involved in the safe dissipation of excitation energy as heat need to cooperate with one another.


Asunto(s)
Adaptación Ocular/fisiología , Antocianinas/metabolismo , Fagaceae/metabolismo , Myrtaceae/metabolismo , Pigmentación/fisiología , Hojas de la Planta/metabolismo , Estaciones del Año , Luz Solar/efectos adversos , Antioxidantes/metabolismo , China , Fenotipo , Fotosíntesis/fisiología
2.
Photosynth Res ; 149(1-2): 25-40, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32462454

RESUMEN

Anthocyanins are water-soluble pigments in plants known for their photoprotective role against photoinhibitory and photooxidative damage under high light (HL). However, it remains unclear whether light-shielding or antioxidant activity plays a major role in the photoprotection exerted by anthocyanins under HL stress. To shed light on this question, we analyzed the physiological and biochemical responses to HL of three Arabidopsis thaliana lines (Col, chi, ans) with different light absorption and antioxidant characteristics. Under HL, ans had the highest antioxidant capacity, followed by Col, and finally chi; Col had the strongest light attenuation capacity, followed by chi, and finally ans. The line ans had weaker physiological activity of chloroplasts and more severe oxidative damage than chi after HL treatment. Col with highest photoprotection of light absorption capacity had highest resistance to HL among the three lines. The line ans with high antioxidant capacity could not compensate for its disadvantages in HL caused by the absence of the light-shielding function of anthocyanins. In addition, the expression level of the Anthocyanin Synthase (ANS) gene was most upregulated after HL treatment, suggesting that the conversion of colorless into colored anthocyanin precursors was necessary under HL. The contribution of anthocyanins to flavonoids, phenols, and antioxidant capacity increased in the late period of HL, suggesting that plants prefer to synthesize red anthocyanins (a group of colored antioxidants) over other colorless antioxidants to cope with HL. These experimental observations indicate that the light attenuation role of anthocyanins is more important than their antioxidant role in photoprotection.


Asunto(s)
Adaptación Ocular/fisiología , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Protección Radiológica , Luz Solar/efectos adversos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Mutación , Estrés Oxidativo/fisiología , Fenotipo , Fotosíntesis/fisiología
3.
Photosynth Res ; 149(1-2): 121-134, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32297101

RESUMEN

Biological invasion is a hot topic in ecological research. Most studies on the physiological mechanisms of plants focus on leaves, but few studies focus on stems. To study the tolerance of invasive plant (Sphagneticola trilobata L.) to low temperature, relevant physiological indicators (including anthocyanin and chlorophyll) in different organs (leaves and stems) were analyzed, using a native species (Sphagneticola calendulacea L.) as the control. The results showed that, upon exposure to low temperature for 15 days, the stems of two Sphagneticola species were markedly reddened, their anthocyanin content increased, chlorophyll and chlorophyll fluorescence parameters decreased, and the accumulation of reactive oxygen species in the stem increased. The percentage increases of antioxidants and total antioxidant capacities in stems were significantly higher in S. trilobata than in S. calendulacea. This showed that S. trilobata had higher cold tolerance in stems while leaves were opposite. To further verify the higher cold tolerance of the stem of S. trilobata, a defoliation experiment was designed. We found that the defoliated stem of S. trilobata reduced anthocyanin accumulation and increased chlorophyll content, while alleviating membrane lipid damage and electrical conductivity, and the defoliated stem still showed an increase in stem diameter and biomass under low temperature. The discovery of the physiological and adaptive mechanisms of the stem of S. trilobata to low temperature will provide a theoretical basis for explaining how S. trilobata maintains its annual growth in South China. This is of great significance for predicting the future spread of cloned and propagated invasive plants.


Asunto(s)
Adaptación Fisiológica , Asteraceae/fisiología , Frío/efectos adversos , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Tallos de la Planta/fisiología , Malezas/fisiología , China , Especies Introducidas
4.
Sci Rep ; 14(1): 2727, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302602

RESUMEN

Different aromatic components do indeed give different tea flavors. There is still little research on whether there is a certain regularity in the combination and content of aromatic components in different aroma types of Phoenix Dancong (PDC) tea. This potential regularity may be a key factor in unraveling the relationship between reproduction and evolution in PDC tea. Here, the 5 kinds of these 4 aroma types PDC tea (Zhuye, Tuofu, Jianghuaxiang, Juduo, Yashixiang) were used as research materials in this study, the headspace solid-phase microextraction combined with gas chromatography-mass spectrometry was used to analyze the aromatic components of these PDC teas. The results showed a total of 36 aromatic components identified in this study. When conducting cluster analysis, it was found that similarity degree arrangement sequence of 5 PDC teas was Juduo, Tuofu, Yashixiang, Zhuye and Jianghuaxiang. Among these aromatic components, the 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione, the 2-Cyclopenten-1-one, 3-methyl-2-(2-pentenyl)-,(Z)-, the 2,4-Di-tert-butylphenol, the 3,7-dimethyl-1,5,7-Octatrien-3-ol, and the 2-Furanmethanol,5-ethenyltetrahydro-.alpha.,.alpha.,5-trimethyl-,cis- are common to 5 PDC teas. This study aims to elucidate the similarities in the aromatic components of 5 PDC teas, revealing the major aroma-endowed substances of various aroma, and providing theoretical reference for further exploring the relationship between aroma type discrimination, variety selection, and evolution of PDC teas.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Odorantes/análisis , Té/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos , Análisis por Conglomerados , Compuestos Orgánicos Volátiles/análisis
5.
Tree Physiol ; 43(6): 965-978, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-36864631

RESUMEN

Many studies have investigated the photoprotective and photosynthetic capacity of plant leaves, but few have simultaneously evaluated the dynamic changes of photoprotective capacity and photosynthetic maturation of leaves at different developmental stages. As a result, the process between the decline of photoprotective substances and the onset of photosynthetic maturation during plant leaf development are still poorly understood, and the relationship between them has not been quantitatively described. In this study, the contents of photoprotective substances, photosynthetic pigment content and photosynthetic capacity of leaves at different developmental stages from young leaves to mature leaves were determined by spatio-temporal replacement in eight dominant tree species in subtropical evergreen broadleaved forests. The correlation analysis found that the data sets of anthocyanins, flavonoids, total phenolics and total antioxidant capacity were mainly distributed on one side of the symmetry axis (y = x), while the data sets of flavonoids, total phenolics and total antioxidant capacity were mainly distributed on both sides of the symmetry axis (y = x). In addition, the content of photoprotective substances in plant leaves was significantly negatively correlated with photosynthetic pigment content and photosynthetic capacity but was significantly positively correlated with dark respiration rate (Rd). When chlorophyll accumulated to ~50% of the final value, the photoprotective substance content and Rd of plant leaves reached the lowest level, and anthocyanins disappeared completely; in contrast, the photosynthetic capacity reached the highest level. Our results suggest that anthocyanins mainly play a light-shielding role in the young leaves of most plants in subtropical forests. In addition, 50% chlorophyll accumulation in most plant leaves was the basis for judging leaf photosynthetic maturity. We also believe that 50% chlorophyll accumulation is a critical period in the transition of plant leaves from high photoprotective capacity (high metabolic capacity, low photosynthetic capacity) to low photoprotective capacity (low metabolic capacity, high photosynthetic capacity).


Asunto(s)
Antocianinas , Árboles , Árboles/metabolismo , Antocianinas/metabolismo , Antioxidantes/metabolismo , Fotosíntesis , Bosques , Clorofila/metabolismo , Hojas de la Planta
6.
Plant Physiol Biochem ; 166: 258-269, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34126593

RESUMEN

Photoprotection strategies that have evolved in plants to cope with high light (HL) stress provide plants with the ability to resist HL. However, it has not been clearly confirmed which photoprotection strategy is the major HL resistance mechanism. To reveal the major photoprotection mechanism against short-term high light (STHL), the physiological and biochemical responses of three Arabidopsis mutants (Col, chi and ans) under STHL were analyzed in this study. After STHL treatment, the most serious photosynthetic pigment damage was observed in chi plants. At the same time, the degrees of membrane and Rubisco damage in chi was the highest, followed by Col, and ans was the smallest. The results showed that ans with high antioxidant capacity showed higher resistance to STHL treatment than Col containing anthocyanins, while chi with no anthocyanin accumulation and small antioxidant capacity had the lowest resistance. In addition, the gene expression results showed that plants tend to synthesize anthocyanin precursor flavonoids with antioxidant capacity under STHL stress. To further determine the major mechanism of photoprotection under STHL, we also analyzed Arabidopsis lines (Col, CHS1, CHS2 and tt4) that had the same anthocyanin content but different antioxidant capacities. It was found that CHS2 with high antioxidant capacity had higher cell viability, smaller maximal quantum yield of PSII photochemistry (Fv/Fm) reduction and less reactive oxygen species (ROS) accumulation under HL treatment of their mesophyll protoplasts. Therefore, the antioxidant capacity provided by antioxidant substances was the major mechanism of plant photoprotection under STHL treatment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Antocianinas , Antioxidantes , Luz , Hojas de la Planta , Receptores Inmunológicos
7.
Tree Physiol ; 41(9): 1669-1684, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-33611548

RESUMEN

Differences in plant shade tolerance constitute a major mechanism driving the succession of forest communities in subtropical forests. However, the indirect effects of differences in light requirements on the growth of mid- and late-successional tree species are unclear, and this potential growth effect has not been explained at the transcriptome level. Here, a typical mid-successional dominant tree species, Schima superba Gardn. et Champ, and a typical late-successional dominant tree species, Cryptocarya concinna Hance were used as materials and planted under 100% full light (FL) and 30% FL (low light, LL) to explore the responses of tree species in different successional stages of subtropical forests to different light environments. Transcriptome sequencing was used to analyze the expression changes in genes related to growth and photoprotection under different light environments. The young leaves of S. superba accumulated more malondialdehyde (MDA) and superoxide radicals (${\mathrm{O}}_2^{{{}^{\bullet}}^{-}}$) under LL. A lower hormone content (auxin, cytokinin, gibberellin) in the young leaves, a weaker photosynthetic capacity in the mature leaves and significant downregulation of related gene expression were also found under LL, which resulted in the total biomass of S. superba under LL being lower than that under FL. The young leaves of C. concinna had less MDA and ${\mathrm{O}}_2^{{{}^{\bullet}}^{-}}$, and a higher hormone contents under LL than those under FL. There was no significant difference in photosynthetic capacity between mature leaves in contrasting light environments. Although the biomass of C. concinna under LL was less than that under FL, the height of C. concinna under LL was higher than that under FL, indicating that C. concinna could grow well under the two light environments. Our results describing the acclimatization of light at the physiological, molecular and transcriptome levels are important for a complete understanding of successional mechanisms.


Asunto(s)
Árboles , Clima Tropical , Bosques , Fotosíntesis , Hojas de la Planta , Transcriptoma , Árboles/genética
8.
Plant Physiol Biochem ; 160: 365-376, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33550177

RESUMEN

Theoretical and experimental studies have demonstrated that temperature is an important environmental factor that affects the regional distribution of plants. However, how to modify the distribution pattern of plants in different regions is a focus of current research. Obtain the information of cold tolerance genes from cold tolerance species, cloning genes with real cold tolerance effects is one of the most important ways to find the genes related to cold tolerance. In this study, we investigated whether transferring the VHA-c gene from Antarctic notothenioid fishes into Arabidopsis enhances freezing tolerance of Arabidopsis. The physiological response and molecular changes of VHA-c overexpressing pedigree and wildtype Arabidopsis were studied at -20 °C. The results showed that the malondialdehyde (MDA) and membrane leakage rates of WT plants were significantly higher than those of VHA-c8 and VHA-c11 plants, but the soluble sugar, soluble protein, proline and ATP contents of WT plants were significantly lower than those of VHA-c8 and VHA-c11 plants under -20 °C freezing treatment. The survival rate, VHA-c gene expression level and VHA-c protein contents of WT plants were significantly lower than those of VHA-c8 and VHA-c11 plants under -20 °C freezing treatment. Correlation analysis showed that ATP content was significantly negatively correlated with MDA and membrane leakage rate, and positively correlated with soluble sugar, soluble protein and proline content under -20 °C freezing treatment. These results demonstrated that overexpression of the VHA-c gene provided strong freezing tolerance to Arabidopsis by increasing the synthesis of ATP and improved the adaptability of plants in low temperature environment.


Asunto(s)
Arabidopsis/fisiología , Proteínas de Peces/fisiología , Peces/genética , Congelación , ATPasas de Translocación de Protón Vacuolares/fisiología , Animales , Regiones Antárticas , Arabidopsis/genética , Frío , Proteínas de Peces/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/fisiología , ATPasas de Translocación de Protón Vacuolares/genética
9.
Funct Plant Biol ; 46(8): 756-765, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31023420

RESUMEN

Light attenuation and antioxidation are the main mechanisms of photoprotection by anthocyanin under high light (HL) stress. Anthocyanin synthase (ANS) is the key enzyme in the downstream portion of anthocyanin synthetic pathways. To explore the role of ANS in photoprotection by anthocyanin under HL stress, homozygous ANS-deficient Arabidopsis mutants were screened from SALK_073183 and SALK_028793. Here, we obtained two deficient mutants, ans-1 and ans-2, which had ANS gene expression levels equal to 5.9 and 32.9% of that of Col respectively. By analysing their physiological and biochemical responses to HL stress, we found that there were positive correlations among ANS expression level, anthocyanin content and resistance to HL. The line with the lowest ANS expression level, ans-1, was also the most sensitive to HL, showing the lowest anthocyanin content, chlorophyll content, Fv/Fm ratio, and Rubisco content and the highest O2•- accumulation and membrane leakage rate, although it also had the highest antioxidant capacity. Experimental evidence suggests that ANS mainly regulated the light-attenuating function of anthocyanin in photoprotection under HL. Blocking excess light is an important function of anthocyanin that protects plants from HL stress, and a high antioxidant capacity cannot compensate for the absence of the light-shielding function of anthocyanin.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Antocianinas , Etiolado , Luz
10.
Tree Physiol ; 38(10): 1486-1501, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29579301

RESUMEN

The abundance of phenolic compounds (including anthocyanins) in leaves is associated with photosynthetic performance, but the regulatory mechanism is unclear. Schima superba Gardn. et Champ. and Cryptocarya concinna Hance., which exhibit distinct anthocyanin accumulation patterns, are dominant tree species in the early- and late-successional stages, respectively, of subtropical forests in China. RNA-seq and analyses of phenolic concentrations, antioxidant capacity and photosynthetic characteristics were performed on young and mature leaves of these two species under contrasting light conditions. The high-light-acclimated young leaves of S. superba and C. concinna and low-light-acclimated young leaves of C. concinna were red. These red leaves had higher ratios of electron transport rate to gross photosynthesis (ETR:Pgross) and total antioxidant capacity to chlorophyll (TAC:Chl) than did the green leaves, regardless of light conditions. In addition, the red leaves had a higher expression level of the UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT) gene than did the green leaves, irrespective of light conditions. Total antioxidant capacity was positively correlated with flavonoid content in C. concinna leaves and with total phenolic content in leaves of both species under both high and low light. Consistent with the measurements of photosynthetic performance and flavonoids:Chl ratio, photosynthesis-related genes were extensively downregulated and flavonoid-pathway-related genes were extensively upregulated in young leaves relative to mature leaves. Under high and low light, both non-photochemical quenching and TAC:Chl, which serve as different types of photoprotective tools, were enhanced in young leaves of S. superba, whereas only TAC:Chl was enhanced in young leaves of C. concinna. Our results indicate that the biosynthesis of phenolic compounds in young leaves is likely enhanced by an imbalance between photosynthetic electron supply and demand and that flavonoids play a larger role in meditating photoprotection in late-successional species than in early-successional ones.


Asunto(s)
Antioxidantes/metabolismo , Cryptocarya/metabolismo , Fenoles/metabolismo , Fotosíntesis , Theaceae/metabolismo , China , Transporte de Electrón , Hojas de la Planta/química , Clima Tropical
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda