RESUMEN
Bruton's tyrosine kinase (BTK) is an attractive target for the treatment of malignancy and inflammatory/autoimmune diseases. Most of the covalent BTK inhibitors would induce off-target side effects and drug resistance. To improve the drug safety of BTK inhibitors, non-covalent inhibitors have attracted more and more attention. We designed a series of novel pyrido[3,4-b]indol-1-one derivatives (N-A and N-B) via scaffold hopping from CGI-1746. The structure-activity relationship (SAR) of the newly-synthesized compounds was explored. The results showed that compounds 12 and 18 exhibited potent enzymatic potency against BTK with IC50 values of 0.22 µM and 0.19 µM, respectively. In lymphoma cell lines U-937 cells and Ramos cells, compounds 12 and 18 displayed comparative antiproliferative activity with Ibrutinib. Moreover, compound 12 induced G1-phase cell cycle arrest and apoptosis in U-937 cells. And it could effectively inhibit tumor growth in U-937 xenograft mouse model (TGI = 41.90% at 50 mg/kg). In all, the new pyrido[3,4-b]indol-1-one derivatives have the antitumor potency by BTK inhibition and were worthy of further exploration.
Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Antineoplásicos/farmacología , Descubrimiento de Drogas , Indoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Agammaglobulinemia Tirosina Quinasa/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Indoles/síntesis química , Indoles/química , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-ActividadRESUMEN
Bruton's tyrosine kinase (BTK) is a promising target in the treatment of B cell malignancies and autoimmune disorders. Developing selective non-covalent BTK inhibitors is an important strategy to overcome the side effects and drug resistance induced by covalent BTK inhibitors. In this article, we designed and synthesized pyrrolo[1,2-a]quinoxalin-4(5H)-one and imidazo[1,2-a]quinoxalin-4(5H)-one based selective noncovalent BTK inhibitors via scaffold hopping from BMS-986142 and investigated their biological activities. Among the synthesized compounds, pyrrolo[1,2-a]quinoxalin-4(5H)-one derivatives 2 and 4 showed great BTK inhibition potency with IC50 value at 7.41 nM and 11.4 nM, respectively. Besides, they showed equivalent or even better potency in U937 and Ramos cells than BMS-986142. The kinase selectivity profiling study illustrated the excellent selectivity of compound 2 against a panel of 468 kinases. In U937 xenograft models, compound 2 could significantly inhibit tumor growth with TGI = 65.61%. In all, we provided a new scaffold as non-covalent selective BTK inhibitors and the representative compounds exhibited potency both in vitro and in vivo.
Asunto(s)
Inhibidores de Proteínas Quinasas , Quinoxalinas , Agammaglobulinemia Tirosina Quinasa , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinoxalinas/farmacología , Relación Estructura-ActividadRESUMEN
Phase change heat storage technology is a good way to solve the problem that the temperature of solar hot water outlet is affected by the time domain. A stearic acid (SA)-benzamide (BA) eutectic mixture is a potential phase change material (PCM), but it still has the disadvantages of low thermal conductivity and liquid leakage. In this work, a new high thermal conductive shape-stabilized composite PCM was prepared by adding boron nitride (BN) and expanded graphite (EG) to a melted SA-BA eutectic mixture using an ultrasonic and melt adsorption method, and its phase change temperature, latent heat, crystal structure, morphology, thermal conductivity, chemical stability, thermal stability, cycle stability and leakage characteristics were characterized. The results indicates that the addition of BN and EG significantly improved the thermal conductivity of the SA-BA eutectic mixture, and they efficiently adsorbed the melted SA-BA eutectic mixture. Besides, when the mass fractions of BN and EG are 15 wt% and 20 wt%, respectively, the 15BN20EG composite has almost no liquid phase leakage. When the melting enthalpy and temperature of 15BN20EG are 132.35 J g-1 and 65.21 °C, respectively, the thermal conductivity of the 15BN20EG is 6.990 W m-1 K-1, which is 20.601 times that of the SA-BA eutectic mixture. Moreover, 15BN20EG shows good thermal stability after 100 cycles and good chemical stability below 100 °C. Therefore, the 15BN20EG composite is considered as a potential candidate for solar thermal applications.
RESUMEN
Bruton's tyrosine kinase (BTK) is an attractive therapeutic target in the treatment of cancer, inflammation, and autoimmune diseases. Covalent and noncovalent BTK inhibitors have been developed, among which covalent BTK inhibitors have shown great clinical efficacy. However, some of them could produce adverse effects, such as diarrhea, rash, and platelet dysfunction, which are associated with the off-target inhibition of ITK and EGFR. In this study, we disclosed a series of pteridine-7(8H)-one derivatives as potent and selective covalent BTK inhibitors, which were optimized from 3z, an EGFR inhibitor previously reported by our group. Among them, compound 24a exhibited great BTK inhibition activity (IC50 = 4.0 nM) and high selectivity in both enzymatic (ITK >250-fold, EGFR >2500-fold) and cellular levels (ITK >227-fold, EGFR 27-fold). In U-937 xenograft models, 24a significantly inhibited tumor growth (TGI = 57.85%) at a 50 mg/kg dosage. Accordingly, 24a is a new BTK inhibitor worthy of further development.