Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 582
Filtrar
1.
Immunology ; 173(2): 339-359, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38934051

RESUMEN

Maintaining intracellular redox balance is essential for the survival, antibody secretion, and mucosal immune homeostasis of immunoglobulin A (IgA) antibody-secreting cells (ASCs). However, the relationship between mitochondrial metabolic enzymes and the redox balance in ASCs has yet to be comprehensively studied. Our study unveils the pivotal role of mitochondrial enzyme PCK2 in regulating ASCs' redox balance and intestinal homeostasis. We discover that PCK2 loss, whether globally or in B cells, exacerbates dextran sodium sulphate (DSS)-induced colitis due to increased IgA ASC cell death and diminished antibody production. Mechanistically, the absence of PCK2 diverts glutamine into the TCA cycle, leading to heightened TCA flux and excessive mitochondrial reactive oxygen species (mtROS) production. In addition, PCK2 loss reduces glutamine availability for glutathione (GSH) synthesis, resulting in a decrease of total glutathione level. The elevated mtROS and reduced GSH expose ASCs to overwhelming oxidative stress, culminating in cell apoptosis. Crucially, we found that the mitochondria-targeted antioxidant Mitoquinone (Mito-Q) can mitigate the detrimental effects of PCK2 deficiency in IgA ASCs, thereby alleviating colitis in mice. Our findings highlight PCK2 as a key player in IgA ASC survival and provide a potential new target for colitis treatment.


Asunto(s)
Colitis , Homeostasis , Mitocondrias , Estrés Oxidativo , Animales , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/inmunología , Ratones , Mitocondrias/metabolismo , Inmunoglobulina A/metabolismo , Sulfato de Dextran , Ratones Noqueados , Células Productoras de Anticuerpos/inmunología , Células Productoras de Anticuerpos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Glutatión/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Intestinos/inmunología , Apoptosis , Modelos Animales de Enfermedad
2.
J Am Chem Soc ; 2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39497233

RESUMEN

The primary cause of the accelerated battery failure in aqueous zinc-ion batteries (AZIBs) is the uncontrollable evolution of the zinc metal-electrolyte interface. In the present research on the development of multiadditives to ameliorate interfaces, it is challenging to elucidate the mechanisms of the various components. Additionally, the synergy among additive molecules is frequently disregarded, resulting in the combined efficacy of multiadditives that is unlikely to surpass the sum of each component. In this study, the "molecular synergistic effect" is employed, which is generated by two nonhomologous acid ester (NAE) additives in the double electrical layer microspace. Specifically, ethyl methyl carbonate (EMC) is more inclined to induce the oriented deposition of zinc metal by means of targeted adsorption with the zinc (002) crystal plane. Methyl acetate (MA) is more likely to enter the solvated shell of Zn2+ and will be profoundly reduced to produce SEI that is dominated by organic components under the "molecular synergistic effect" of EMC. Furthermore, MA persists in a spontaneous hydrolysis reaction, which serves to mitigate the pH increase caused by the hydrogen evolution reaction (HER) and further prevents the formation of byproducts. Consequently, the 1E1M electrolyte not only extends the cycle life of the zinc anode to 3140 cycles (1 mA h cm-2 and 1 mA cm-2) but also extends the life of the Zn//MnO2 full battery, with the capacity retention rate still at 89.9% after 700 cycles.

3.
Am J Physiol Endocrinol Metab ; 326(1): E1-E13, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37938178

RESUMEN

N6-methyladenosine (m6A) is the most prevalent post-transcriptional internal RNA modification, which is involved in the regulation of diverse physiological processes. Dynamic and reversible m6A modification has been shown to regulate glucose metabolism, and dysregulation of m6A modification contributes to glucose metabolic disorders in multiple organs and tissues including the pancreas, liver, adipose tissue, skeletal muscle, kidney, blood vessels, and so forth. In this review, the role and molecular mechanism of m6A modification in the regulation of glucose metabolism were summarized, the potential therapeutic strategies that improve glucose metabolism by targeting m6A modifiers were outlined, and feasible directions of future research in this field were discussed as well, providing clues for translational research on combating metabolic diseases based on m6A modification in the future.


Asunto(s)
Adenosina , Procesamiento Postranscripcional del ARN , Adenosina/genética , Adenosina/metabolismo , Homeostasis , Glucosa/metabolismo
4.
Liver Int ; 44(10): 2572-2582, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38963299

RESUMEN

BACKGROUND AND AIMS: Lifestyle intervention is the mainstay of therapy for metabolic dysfunction-associated steatohepatitis (MASH), and liver fibrosis is a key consequence of MASH that predicts adverse clinical outcomes. The placebo response plays a pivotal role in the outcome of MASH clinical trials. Second harmonic generation/two-photon excitation fluorescence (SHG/TPEF) microscopy with artificial intelligence analyses can provide an automated quantitative assessment of fibrosis features on a continuous scale called qFibrosis. In this exploratory study, we used this approach to gain insight into the effect of lifestyle intervention-induced fibrosis changes in MASH. METHODS: We examined unstained sections from paired liver biopsies (baseline and end-of-intervention) from MASH individuals who had received either routine lifestyle intervention (RLI) (n = 35) or strengthened lifestyle intervention (SLI) (n = 17). We quantified liver fibrosis with qFibrosis in the portal tract, periportal, transitional, pericentral, and central vein regions. RESULTS: About 20% (7/35) and 65% (11/17) of patients had fibrosis regression in the RLI and SLI groups, respectively. Liver fibrosis tended towards no change or regression after each lifestyle intervention, and this phenomenon was more prominent in the SLI group. SLI-induced liver fibrosis regression was concentrated in the periportal region. CONCLUSION: Using digital pathology, we could detect a more pronounced fibrosis regression with SLI, mainly in the periportal region. With changes in fibrosis area in the periportal region, we could differentiate RLI and SLI patients in the placebo group in the MASH clinical trial. Digital pathology provides new insight into lifestyle-induced fibrosis regression and placebo responses, which is not captured by conventional histological staging.


Asunto(s)
Inteligencia Artificial , Cirrosis Hepática , Humanos , Cirrosis Hepática/patología , Cirrosis Hepática/terapia , Femenino , Masculino , Persona de Mediana Edad , Adulto , Hígado/patología , Microscopía de Fluorescencia por Excitación Multifotónica , Biopsia , Estilo de Vida , Hígado Graso/terapia , Hígado Graso/patología
5.
Diabetes Obes Metab ; 26(12): 5757-5775, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39285685

RESUMEN

AIMS: To explore the associations between cuprotosis-related genes (CRGs) across different stages of liver disease in metabolic dysfunction-associated fatty liver disease (MAFLD), including hepatocellular carcinoma (HCC). MATERIALS AND METHODS: We analysed several bulk RNA sequencing datasets from patients with MAFLD (n = 331) and MAFLD-related HCC (n = 271) and two MAFLD single-cell RNA sequencing datasets. To investigate the associations between CRGs and MAFLD, we performed differential correlation, logistic regression and functional enrichment analyses. We also validated the findings in an independent Wenzhou PERSONS cohort of MAFLD patients (n = 656) used for a genome-wide association study (GWAS). RESULTS: GLS, GCSH and ATP7B genes showed significant differences across the MAFLD spectrum and were significantly associated with liver fibrosis stages. GLS was closely associated with fibrosis stages in patients with MAFLD and those with MAFLD-related HCC. GLS is predominantly expressed in monocytes and T cells in MAFLD. During the progression of metabolic dysfunction-associated fatty liver to metabolic-associated steatohepatitis, GLS expression in T cells decreased. GWAS revealed that multiple single nucleotide polymorphisms in GLS were associated with clinical indicators of MAFLD. CONCLUSIONS: GLS may contribute to liver inflammation and fibrosis in MAFLD mainly through cuprotosis and T-cell activation, promoting the progression of MAFLD to HCC. These findings suggest that cuprotosis may play a role in MAFLD progression, potentially providing new insights into MAFLD pathogenesis.


Asunto(s)
Carcinoma Hepatocelular , Estudio de Asociación del Genoma Completo , Neoplasias Hepáticas , Humanos , Femenino , Masculino , Carcinoma Hepatocelular/genética , Persona de Mediana Edad , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Polimorfismo de Nucleótido Simple , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Adulto , Anciano , Progresión de la Enfermedad
6.
Infection ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884857

RESUMEN

OBJECTIVES: In this retrospective observational multicenter study, we aimed to assess efficacy and mortality between ceftazidime/avibactam (CAZ/AVI) or polymyxin B (PMB)-based regimens for the treatment of Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections, as well as identify potential risk factors. METHODS: A total of 276 CRKP-infected patients were enrolled in our study. Binary logistic and Cox regression analysis with a propensity score-matched (PSM) model were performed to identify risk factors for efficacy and mortality. RESULTS: The patient cohort was divided into PMB-based regimen group (n = 98, 35.5%) and CAZ/AVI-based regimen group (n = 178, 64.5%). Compared to the PMB group, the CAZ/AVI group exhibited significantly higher rates of clinical efficacy (71.3% vs. 56.1%; p = 0.011), microbiological clearance (74.7% vs. 41.4%; p < 0.001), and a lower incidence of acute kidney injury (AKI) (13.5% vs. 33.7%; p < 0.001). Binary logistic regression revealed that the treatment duration independently influenced both clinical efficacy and microbiological clearance. Vasoactive drugs, sepsis/septic shock, APACHE II score, and treatment duration were identified as risk factors associated with 30-day all-cause mortality. The CAZ/AVI-based regimen was an independent factor for good clinical efficacy, microbiological clearance, and lower AKI incidence. CONCLUSIONS: For patients with CRKP infection, the CAZ/AVI-based regimen was superior to the PMB-based regimen.

7.
Biomed Chromatogr ; 38(4): e5817, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38131121

RESUMEN

Mycoplasma pneumoniae is a significant contributor to lower respiratory infections in children. However, the lipidomics and metabolics bases of childhood M. pneumoniae infections remain unclear. In this study, lipidomics and metabolomics analyses were conducted using UHPLC-LTQ-Orbitrap XL mass spectrometry and gas chromatography-triple quadrupole mass spectrometry on plasma (n = 65) and urine (n = 65) samples. MS-DIAL software, in combination with LipidBlast and Fiehn BinBase DB, identified 163 lipids and 104 metabolites in plasma samples, as well as 208 metabolites in urine samples. Perturbed lipid species (adjusted p < 0.05) were observed, including lysophosphatidylethanolamines, phosphatidylinositols, phosphatidylcholines, phosphatidylethanol amines, and triglycerides. Additionally, differential metabolites (adjusted p < 0.05) exhibited associations with amino acid metabolism, nucleotide metabolism, and energy metabolism. Thirteen plasma metabolites, namely l-hydroxyproline, 3-phosphoglycerate, citric acid, creatine, inosine, ribitol, α tocopherol, cholesterol, cystine, serine, uric acid, tagatose, and glycine, showed significant associations with disease severity (p < 0.05) and exhibited distinct separation patterns in M. pneumoniae-infected bronchitis and pneumonia, with an area under the curve of 0.927. Nine of them exhibited either positive or negative correlations with neutrophil or lymphocyte percentages. These findings indicated significant systemic metabolic shifts in childhood M. pneumoniae infections, offering valuable insights into the associated metabolic alterations and their relationship with disease severity.


Asunto(s)
Líquidos Corporales , Neumonía por Mycoplasma , Humanos , Niño , Lipidómica , Metabolómica , Plasma
8.
Ren Fail ; 46(1): 2344658, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38644359

RESUMEN

Previous studies have highlighted the significant role of complement activation in kidney injuries induced by rhabdomyolysis, intravascular hemolysis, sepsis, and ischemia-reperfusion. Nevertheless, the specific role and mechanism of complement activation in acute kidney injury (AKI) caused by wasp venom remain unclear. The aim of this study was to elucidate the specific complement pathway activated and investigate complement activation in AKI induced by wasp venom. In this study, a complement-depleted mouse model was used to investigate the role of complement in wasp venom-induced AKI. Mice were randomly categorized into control, cobra venom factor (CVF), AKI, and CVF + AKI groups. Compared to the AKI group, the CVF + AKI group showed improved pathological changes in kidneys and reduced blood urea nitrogen (BUN) levels. The expression levels of renal complement 3 (C3), complement 5 (C5), complement 1q (C1q), factor B (FB), mannose-binding lectin (MBL), and C5b-9 in AKI group were upregulated compared with the control group. Conversely, the renal tissue expression levels of C3, C5, C1q, FB, MBL, and C5b-9 were decreased in the CVF + AKI group compared to those in the AKI group. Complement activation occurs through all three pathways in AKI induced by wasp venom. Furthermore, complement depletion by CVF attenuates wasp venom-induced nephrotoxicity, suggesting that complement activation plays a primary role in the pathogenesis of wasp venom-induced AKI.


Asunto(s)
Lesión Renal Aguda , Activación de Complemento , Modelos Animales de Enfermedad , Venenos de Avispas , Animales , Lesión Renal Aguda/inmunología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/inducido químicamente , Ratones , Venenos de Avispas/inmunología , Venenos de Avispas/efectos adversos , Masculino , Riñón/patología , Venenos Elapídicos , Nitrógeno de la Urea Sanguínea , Complemento C3/metabolismo , Proteínas del Sistema Complemento/metabolismo
9.
Sensors (Basel) ; 24(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38257432

RESUMEN

In this paper, the asymptotic consensus control of multi-agent systems with general linear agent dynamics is investigated. A neighbor-based adaptive event-triggering strategy with a dynamic triggering threshold is proposed, which leads to a fully distributed control of the multi-agent system, depending only on the states of the neighboring agents at triggering moments. By using the Lyapunov method, we prove that the states of the agents converge asymptotically. In addition, the proposed event-triggering strategy is proven to exclude Zeno behavior. The numerical simulation results illustrate that the agent states achieve consensus in sense of asymptotic convergence. Furthermore, the proposed strategy is shown to be scalable in case of variable agent numbers.

10.
J Asian Nat Prod Res ; : 1-9, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963070

RESUMEN

Five new glycosides, namely methyl 3-methoxybenzoate-4,5-di-O-ß-D-glucopyranoside (1), (1aS,3aS,3R)-3-(4'-O-ß-D-glucopyranosyl-3'-methoxyphenyl)-5,6-dioxa-bicyclo[3.3.0]octane-1-one (2), quinolin-4(1H)-one-3-O-ß-D-glucopyranoside (3), 3-methoxy-propiophenone 4-O-(6'-ß-D-xylopyranosyl)-ß-D-glucopyranoside (4), methyl 3-methoxybenzoate 4-O-(6'-ß-D-xylopyranosyl)-ß-D-glucopyranoside (5), and one known compound, bambulignan B (6) were isolated from the culms of Phyllostachys nigra var. henonis. Their structures were determined using spectroscopic analysis. All compounds were evaluated for their DPPH radical scavenging activity. Compound 6 exhibited antioxidant activity with IC50 value of 59.5 µM (positive control, L-ascorbic acid, IC50 = 12.4 µM; 2,6-ditertbutyl-4-methyl phenol, IC50 = 11.8 µM).

11.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3212-3219, 2024 Jun.
Artículo en Zh | MEDLINE | ID: mdl-39041082

RESUMEN

In this experiment, the micro-precipitation method was used to prepare self-assembled nanoparticles of Herpetospermum caudigerum Wall.(MP-SAN). The process was optimized using average particle size and polydispersity index(PDI)as evaluation indexes. The mean particle size, PDI,zeta potential, and microstructure of MP-SAN were characterized. The intestinal absorption mechanism of dehydrodiconiferyl alcohol(DA)and herpetrione(Her)in MP-SAN was investigated through single-pass intestinal perfusion in rats. The optimized process parameters for producing MP-SAN were a stirring speed of 800 r·min~(-1),stirring time of 5 min, and rotary evaporation temperature of 40℃. The resulting MP-SAN exhibited a spherical-like structure and uniform morphology, with a mean particle size of(267.63±13.27) nm, a PDI of 0.062 0±0.043 9,and a zeta potential of(-46.18±3.66) mV. The absorption rate constant(K_a)and apparent permeability coefficient(P_(app))of DA in the ileal segment were significantly higher than those in the jejunal segment(P<0.05). However, there was no significant difference in the absorption of Her between the ileal and jejunal segments. Intestinal absorption parameters of DA and Her tended to increase with increasing drug concentration. Specifically, the K_a and P_(app) of DA in MP-SAN in the high-concentration group were significantly higher than those in the low-concentration group(P<0.01). The addition of verapamil, a P-glycoprotein inhibitor, did not significantly affect the intestinal absorption of DA and Her. However, the absorption of both DA and Her in MP-SAN was significantly increased by the addition of indomethacin(P<0.05),suggesting that DA and Her may be substrates for multidrug resistance-associated protein 2.


Asunto(s)
Absorción Intestinal , Nanopartículas , Tamaño de la Partícula , Animales , Nanopartículas/química , Ratas , Masculino , Ratas Sprague-Dawley , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacocinética , Cucurbitaceae/química
12.
Angew Chem Int Ed Engl ; : e202412080, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39234632

RESUMEN

Proton exchange membrane (PEM) electrolysis holds great promise for green hydrogen production, but suffering from high loading of platinum-group metals (PGM) for large-scale deployment. Anchoring PGM-based materials on supports can not only improve the atomic utilization of active sites but also enhance the intrinsic activity. However, in practical PEM electrolysis, it is still challenging to mediate hydrogen adsorption/desorption pathways with high coverage of hydrogen intermediates over catalyst surface. Here, operando generated stable palladium (Pd) hydride nanoclusters anchored on tungsten carbide (WCx) supports were constructed for hydrogen evolution in PEM electrolysis. Under PEM operando conditions, hydrogen intercalation induces formation of Pd hydrides (PdHx) featuring weakened hydrogen binding energy (HBE), thus triggering reverse hydrogen spillover from WCx (strong HBE) supports to PdHx sites, which have been evidenced by operando characterizations, electrochemical results and theoretical studies. This PdHx-WCx material can be directly utilized as cathode electrocatalysts in PEM electrolysis with ultralow Pd loading of 0.022 mg cm-2, delivering the current density of 1 A cm-2 at the cell voltage of ~1.66 V and continuously running for 200 hours without obvious degradation. This innovative strategy via tuning the operando characteristics to mediate reverse hydrogen spillover provide new insights for designing high-performance supported PGM-based electrocatalysts.

13.
Angew Chem Int Ed Engl ; : e202415423, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39412194

RESUMEN

In the context of oxygen evolution reaction (OER), the construction of high-valent transition metal sites to trigger the lattice oxygen oxidation mechanism is considered crucial for overcoming the performance limitations of traditional adsorbate evolution mechanism. However, the dynamic evolution of lattice oxygen during the reaction poses significant challenges for the stability of high-valent metal sites, particularly in high-current-density water-splitting systems. Here, we have successfully constructed Co-O-Fe catalytic active motifs in cobalt-iron Prussian blue analogs (CoFe-PBA) through oxygen plasma bombardment, effectively activating lattice oxygen reactivity while sustaining robust stability. Our spectroscopic and theoretical studies reveal that the Co-O-Fe bridged motifs enable a unique double-exchange interaction between Co and Fe atoms, promoting the formation of high-valent Co species as OER active centers while maintaining Fe in a low-valent state, preventing its dissolution. The resultant catalyst (CoFe-PBA-30) requires an overpotential of only 276 mV to achieve 1000 mA cm-2. Furthermore, the assembled alkaline exchange membrane electrolyzer using CoFe-PBA-30 as anode material achieves a high current density of 1 A cm-2 at 1.76 V and continuously operates for 250 hours with negligible degradation. This work provides significant insights for activating lattice oxygen redox without compromising structure stability in practical water electrolyzers.

14.
Angew Chem Int Ed Engl ; 63(15): e202319882, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38337137

RESUMEN

Polar materials with spontaneous polarization (Ps) have emerged as highly promising photocatalysts for efficient photocatalytic H2 evolution owing to the Ps-enhanced photogenerated carrier separation. However, traditional inorganic polar materials often suffer from limitations such as wide band gaps and poor carrier transport, which hinders their photocatalytic H2 evolution efficiency. Here, we rationally synthesized a series of isostructural two-dimensional (2D) aromatic Dion-Jacobson (DJ) perovskites, namely (2-(2-Aminoethyl)pyridinium)PbI4 (2-APDPI), (3-(2-Aminoethyl)pyridinium)PbI4 (3-APDPI), and (4-(2-Aminoethyl)pyridinium)PbI4 (4-APDPI), where 2-APDPI and 4-APDPI crystalize in polar space groups with piezoelectric constants (d33) of approximately 40 pm V-1 and 3-APDPI adopts a centrosymmetric structure. Strikingly, owing to the Ps-facilitated separation of photogenerated carriers, polar 2-APDPI and 4-APDPI exhibit a 3.9- and 2.8-fold increase, respectively, in photocatalytic H2 evolution compared to the centrosymmetric 3-APDPI. As a pioneering study, this work provides an efficient approach for exploring new polar photocatalysts and highlights their potential in promoting photocatalytic H2 evolution.

15.
Small ; 19(23): e2207037, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36879480

RESUMEN

Electrochemical CO2 -to-CO conversion offers an attractive and efficient route to recycle CO2 greenhouse gas. Molecular catalysts, like CoPc, are proved to be possible replacement for precious metal-based catalysts. These molecules, a combination of metal center and organic ligand molecule, may evolve into single atom structure for enhanced performance; besides, the manipulation of molecules' behavior also plays an important role in mechanism research. Here, in this work, the structure evolution of CoPc molecules is investigated via electrochemical-induced activation process. After numbers of cyclic voltammetry scanning, CoPc molecular crystals become cracked and crumbled, meanwhile the released CoPc molecules migrate to the conductive substrate. Atomic-scale HAADF-STEM proves the migration of CoPc molecules, which is the main reason for the enhancement in CO2 -to-CO performance. The as-activated CoPc exhibits a maximum FECO of 99% in an H-type cell and affords a long-term durability at 100 mA cm-2 for 29.3 h in a membrane electrode assembly reactor. Density-functional theory (DFT) calculation also demonstrates a favorable CO2 activation energy with such an activated CoPc structure. This work provides a different perspective for understanding molecular catalysts as well as a reliable and universal method for practical utilization.

16.
Chemphyschem ; 24(8): e202200657, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36646629

RESUMEN

The discovery of high-performance catalysts for the electrochemical CO2 reduction reaction (CO2 RR) has faced an enormous challenge for years. The lack of cognition about the surface active structures or centers of catalysts in complex conditions limits the development of advanced catalysts for CO2 RR. Recently, the positive valent metal sites (PVMS) are demonstrated as a kind of potential active sites, which can facilitate carbon dioxide (CO2 ) activation and conversation but are always unstable under reduction potentials. Many advanced technologies in theory and experiment have been utilized to understand and develop excellent catalysts with PVMS for CO2 RR. Here, we present an introduction of some typical catalysts with PVMS in CO2 RR and give some understanding of the activity and stability for these related catalysts.

17.
Liver Int ; 43(6): 1234-1246, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36924436

RESUMEN

BACKGROUND & AIMS: There is an unmet clinical need for non-invasive tests to diagnose non-alcoholic fatty liver disease (NAFLD) and individual fibrosis stages. We aimed to test whether urine protein panels could be used to identify NAFLD, NAFLD with fibrosis (stage F ≥ 1) and NAFLD with significant fibrosis (stage F ≥ 2). METHODS: We collected urine samples from 100 patients with biopsy-confirmed NAFLD and 40 healthy volunteers, and proteomics and bioinformatics analyses were performed in this derivation cohort. Diagnostic models were developed for detecting NAFLD (UPNAFLD model), NAFLD with fibrosis (UPfibrosis model), or NAFLD with significant fibrosis (UPsignificant fibrosis model). Subsequently, the derivation cohort was divided into training and testing sets to evaluate the efficacy of these diagnostic models. Finally, in a separate independent validation cohort of 100 patients with biopsy-confirmed NAFLD and 45 healthy controls, urinary enzyme-linked immunosorbent assay analyses were undertaken to validate the accuracy of these new diagnostic models. RESULTS: The UPfibrosis model and the UPsignificant fibrosis model showed an AUROC of .863 (95% CI: .725-1.000) and 0.858 (95% CI: .712-1.000) in the training set; and .837 (95% CI: .711-.963) and .916 (95% CI: .825-1.000) in the testing set respectively. The UPNAFLD model showed an excellent diagnostic performance and the area under the receiver operator characteristic curve (AUROC) exceeded .90 in the derivation cohort. In the independent validation cohort, the AUROC for all three of the above diagnostic models exceeded .80. CONCLUSIONS: Our newly developed models constructed from urine protein biomarkers have good accuracy for non-invasively diagnosing liver fibrosis in NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/patología , Cirrosis Hepática/patología , Fibrosis , Biomarcadores/metabolismo , Biopsia , Hígado/patología
18.
Eur Radiol ; 33(12): 8899-8911, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37470825

RESUMEN

OBJECTIVE: This study aimed to evaluate the diagnostic performance of machine learning (ML)-based ultrasound (US) radiomics models for risk stratification of gallbladder (GB) masses. METHODS: We prospectively examined 640 pathologically confirmed GB masses obtained from 640 patients between August 2019 and October 2022 at four institutions. Radiomics features were extracted from grayscale US images and germane features were selected. Subsequently, 11 ML algorithms were separately used with the selected features to construct optimum US radiomics models for risk stratification of the GB masses. Furthermore, we compared the diagnostic performance of these models with the conventional US and contrast-enhanced US (CEUS) models. RESULTS: The optimal XGBoost-based US radiomics model for discriminating neoplastic from non-neoplastic GB lesions showed higher diagnostic performance in terms of areas under the curves (AUCs) than the conventional US model (0.822-0.853 vs. 0.642-0.706, p < 0.05) and potentially decreased unnecessary cholecystectomy rate in a speculative comparison with performing cholecystectomy for lesions sized over 10 mm (2.7-13.8% vs. 53.6-64.9%, p < 0.05) in the validation and test sets. The AUCs of the XGBoost-based US radiomics model for discriminating carcinomas from benign GB lesions were higher than the conventional US model (0.904-0.979 vs. 0.706-0.766, p < 0.05). The XGBoost-US radiomics model performed better than the CEUS model in discriminating GB carcinomas (AUC: 0.995 vs. 0.902, p = 0.011). CONCLUSIONS: The proposed ML-based US radiomics models possess the potential capacity for risk stratification of GB masses and may reduce the unnecessary cholecystectomy rate and use of CEUS. CLINICAL RELEVANCE STATEMENT: The machine learning-based ultrasound radiomics models have potential for risk stratification of gallbladder masses and may potentially reduce unnecessary cholecystectomies. KEY POINTS: • The XGBoost-based US radiomics models are useful for the risk stratification of GB masses. • The XGBoost-based US radiomics model is superior to the conventional US model for discriminating neoplastic from non-neoplastic GB lesions and may potentially decrease unnecessary cholecystectomy rate for lesions sized over 10 mm in comparison with the current consensus guideline. • The XGBoost-based US radiomics model could overmatch CEUS model in discriminating GB carcinomas from benign GB lesions.


Asunto(s)
Carcinoma , Enfermedades de la Vesícula Biliar , Neoplasias de la Vesícula Biliar , Humanos , Estudios Prospectivos , Medios de Contraste , Neoplasias de la Vesícula Biliar/diagnóstico por imagen , Aprendizaje Automático , Medición de Riesgo , Estudios Retrospectivos
19.
Am J Hematol ; 98(9): 1394-1406, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37366294

RESUMEN

Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell malignancy, and allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only curable treatment. The outcomes after transplant are influenced by both disease characteristics and patient comorbidities. To develop a novel prognostic model to predict the post-transplant survival of CMML patients, we identified risk factors by applying univariable and multivariable Cox proportional hazards regression to a derivation cohort. In multivariable analysis, advanced age (hazard ratio [HR] 3.583), leukocyte count (HR 3.499), anemia (HR 3.439), bone marrow blast cell count (HR 2.095), and no chronic graft versus host disease (cGVHD; HR 4.799) were independently associated with worse survival. A novel prognostic model termed ABLAG (Age, Blast, Leukocyte, Anemia, cGVHD) was developed and the points were assigned according to the regression equation. The patients were categorized into low risk (0-1), intermediate risk (2, 3), and high risk (4-6) three groups and the 3-year overall survival (OS) were 93.3% (95%CI, 61%-99%), 78.9% (95%CI, 60%-90%), and 51.6% (95%CI, 32%-68%; p < .001), respectively. In internal and external validation cohort, the area under the receiver operating characteristic (ROC) curves of the ABLAG model were 0.829 (95% CI, 0.776-0.902) and 0.749 (95% CI, 0.684-0.854). Compared with existing models designed for the nontransplant setting, calibration plots, and decision curve analysis showed that the ABLAG model revealed a high consistency between predicted and observed outcomes and patients could benefit from this model. In conclusion, combining disease and patient characteristic, the ABLAG model provides better survival stratification for CMML patients receiving allo-HSCT.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia Mielomonocítica Crónica , Humanos , Pronóstico , Trasplante Homólogo/efectos adversos , Estudios Retrospectivos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Enfermedad Injerto contra Huésped/etiología
20.
Inflamm Res ; 72(4): 703-713, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36745209

RESUMEN

OBJECTIVE AND DESIGN: The age-associated increases in aseptic inflammation and necroptosis are closely related to the emergence of various age-associated diseases. METHODS: In this study, the role of HMGB1/TLR4-induced necroptosis in abdominal aortic aneurysm (AAA) formation was investigated. First, the levels of sterile inflammatory mediators (HMGB1, TLR4) and necroptosis markers were measured in the abdominal aortas of young and old C57BL/6JNifdc mice. We observed that sterile inflammatory mediators and necroptosis markers were greatly increased in the abdominal aortas of old mice. Then, angiotensin II (Ang II)-induced AAA model in APOE-/- mice was used in this study. Mice AAA models were treated with the RIP1 inhibitor necrostatin-1 (Nec-1) or the TLR4 inhibitor TAK-242, respectively. RESULTS: We found that HMGB1, TLR4, and necroptosis markers were elevated in old mice compared with those in young mice. Same elevation was also found in the development of AAA in APOE-/- mice. In addition, the necroptosis inhibitor Nec-1 alleviated Ang II-induced AAA development while downregulating the expression of HMGB1/TLR4. After blocking TLR4 with TAK-242, the expression of necroptosis markers decreased significantly, and the progression of AAA was also alleviated in APOE-/- mice. CONCLUSIONS: Our results indicated that HMGB1/TLR4-mediated necroptosis enhances AAA development in the Ang II-induced AAA model in APOE-/- mice and that TLR4 might be a potential therapeutic target for AAA management.


Asunto(s)
Aneurisma de la Aorta Abdominal , Proteína HMGB1 , Ratones , Animales , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Proteína HMGB1/metabolismo , Necroptosis , Ratones Endogámicos C57BL , Aneurisma de la Aorta Abdominal/inducido químicamente , Aorta Abdominal/metabolismo , Transducción de Señal , Mediadores de Inflamación/metabolismo , Apolipoproteínas E/efectos adversos , Apolipoproteínas E/metabolismo , Angiotensina II/farmacología , Angiotensina II/metabolismo , Modelos Animales de Enfermedad , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda