RESUMEN
Mature T cells must discriminate between brief interactions with self-peptides and prolonged binding to agonists. The kinetic proofreading model posits that certain T-cell antigen receptor signaling nodes serve as molecular timers to facilitate such discrimination. However, the physiological significance of this regulatory mechanism and the pathological consequences of disrupting it are unknown. Here we report that accelerating the normally slow phosphorylation of the linker for activation of T cells (LAT) residue Y136 by introducing an adjacent Gly135Asp alteration (LATG135D) disrupts ligand discrimination in vivo. The enhanced self-reactivity of LATG135D T cells triggers excessive thymic negative selection and promotes T-cell anergy. During Listeria infection, LATG135D T cells expand more than wild-type counterparts in response to very weak stimuli but display an imbalance between effector and memory responses. Moreover, despite their enhanced engagement of central and peripheral tolerance mechanisms, mice bearing LATG135D show features associated with autoimmunity and immunopathology. Our data reveal the importance of kinetic proofreading in balancing tolerance and immunity.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Linfocitos T , Ratones , Animales , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sustitución de Aminoácidos , Receptores de Antígenos de Linfocitos T/metabolismo , Activación de Linfocitos , Fosforilación , Fosfoproteínas/genéticaRESUMEN
T cell responses are inhibited by acidic environments. T cell receptor (TCR)-induced protein phosphorylation is negatively regulated by dephosphorylation and/or ubiquitination, but the mechanisms underlying sensitivity to acidic environments are not fully understood. Here, we found that TCR stimulation induced a molecular complex of Cbl-b, an E3-ubiquitin ligase, with STS1, a pH-sensitive unconventional phosphatase. The induced interaction depended upon a proline motif in Cbl-b interacting with the STS1 SH3 domain. STS1 dephosphorylated Cbl-b interacting phosphoproteins. The deficiency of STS1 or Cbl-b diminished the sensitivity of T cell responses to the inhibitory effects of acid in an autocrine or paracrine manner in vitro or in vivo. Moreover, the deficiency of STS1 or Cbl-b promoted T cell proliferative and differentiation activities in vivo and inhibited tumor growth, prolonged survival, and improved T cell fitness in tumor models. Thus, a TCR-induced STS1-Cbl-b complex senses intra- or extra-cellular acidity and regulates T cell responses, presenting a potential therapeutic target for improving anti-tumor immunity.
Asunto(s)
Transducción de Señal , Linfocitos T , Ubiquitina-Proteína Ligasas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Concentración de Iones de HidrógenoRESUMEN
ABSTRACT: Complete remission with partial hematological recovery (CRh) has been used as an efficacy endpoint in clinical trials of nonmyelosuppressive drugs for acute myeloid leukemia (AML). We conducted a pooled analysis to characterize the clinical outcomes for patients with AML who achieved CRh after treatment with ivosidenib, olutasidenib, enasidenib, or gilteritinib monotherapy in clinical trials used to support marketing applications. The study cohort included 841 adult patients treated at the recommended drug dosage; 64.6% were red blood cell or platelet transfusion dependent at study baseline. Correlations between disease response and outcomes were assessed by logistic regression modeling for categorical variables and by Cox proportional hazards modeling for time-to-event variables. Patients with CRh had a higher proportion with transfusion independence (TI) for at least 56 days (TI-56; 92.3% vs 22.3%; P < .0001) or TI for at least 112 days (TI-112; 63.5% vs 8.7%; P < .0001), a reduced risk over time for severe infection (hazard ratio [HR], 0.43; P = .0007) or severe bleeding (HR, 0.17; P = .01), and a longer overall survival (OS; HR, 0.31; P < .0001) than patients with no response. The effects were consistent across drugs. In comparison with patients with CR, the effect sizes for CRh were similar for TI-56 and for risk over time of infection or bleeding but less for TI-112 and OS. CRh is associated with clinical benefits consistent with clinically meaningful palliative effects for the treatment of AML with nonmyelosuppressive drugs, although less robustly than for CR.
Asunto(s)
Leucemia Mieloide Aguda , Inducción de Remisión , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/mortalidad , Persona de Mediana Edad , Femenino , Masculino , Anciano , Adulto , Cuidados Paliativos/métodos , Anciano de 80 o más Años , Adulto Joven , Resultado del Tratamiento , Antineoplásicos/uso terapéuticoRESUMEN
Telomere dysfunction is intricately linked to the aging process and stands out as a prominent cancer hallmark. Here we demonstrate that telomerase activity is differentially regulated in cancer and normal cells depending on the expression status of fructose-1,6-bisphosphatase 1 (FBP1). In FBP1-expressing cells, FBP1 directly interacts with and dephosphorylates telomerase reverse transcriptase (TERT) at Ser227. Dephosphorylated TERT fails to translocate into the nucleus, leading to the inhibition of telomerase activity, reduction in telomere lengths, enhanced senescence and suppressed tumor cell proliferation and growth in mice. Lipid nanoparticle-mediated delivery of FBP1 mRNA inhibits liver tumor growth. Additionally, FBP1 expression levels inversely correlate with TERT pSer227 levels in renal and hepatocellular carcinoma specimens and with poor prognosis of the patients. These findings demonstrate that FBP1 governs cell immortality through its protein phosphatase activity and uncover a unique telomerase regulation in tumor cells attributed to the downregulation or deficiency of FBP1 expression.
Asunto(s)
Fructosa-Bifosfatasa , Telomerasa , Telomerasa/metabolismo , Telomerasa/genética , Telomerasa/antagonistas & inhibidores , Humanos , Animales , Fructosa-Bifosfatasa/metabolismo , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfatasa/antagonistas & inhibidores , Ratones , Proliferación Celular , Fosforilación , Línea Celular Tumoral , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Ratones DesnudosRESUMEN
Fatty acid oxidation (FAO) is crucial for cells to overcome metabolic stress by providing ATP and NADPH. However, the mechanism by which FAO is regulated in tumors remains elusive. Here we show that Nur77 is required for the metabolic adaptation of melanoma cells by protecting FAO. Glucose deprivation activates ERK2 to phosphorylate and induce Nur77 translocation to the mitochondria, where Nur77 binds to TPß, a rate-limiting enzyme in FAO. Although TPß activity is normally inhibited by oxidation under glucose deprivation, the Nur77-TPß association results in Nur77 self-sacrifice to protect TPß from oxidation. FAO is therefore able to maintain NADPH and ATP levels and prevent ROS increase and cell death. The Nur77-TPß interaction further promotes melanoma metastasis by facilitating circulating melanoma cell survival. This study demonstrates a novel regulatory function of Nur77 with linkage of the FAO-NADPH-ROS pathway during metabolic stress, suggesting Nur77 as a potential therapeutic target in melanoma.
Asunto(s)
Melanoma/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Animales , Supervivencia Celular/fisiología , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Células HEK293 , Humanos , Metabolismo de los Lípidos , Melanoma/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/metabolismo , Subunidad beta de la Proteína Trifuncional Mitocondrial/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
The sperm flagellum is essential for male fertility, and defects in flagellum biogenesis are associated with male infertility. Deficiency of coiled-coil domain-containing (CCDC) 42 (CCDC42) is specifically associated with malformation of mouse sperm flagella. Here, we find that the testis-specific protein CCDC38 interacts with CCDC42, localizing on the manchette and sperm tail during spermiogenesis. Inactivation of CCDC38 in male mice results in a distorted manchette, multiple morphological abnormalities of the flagella of spermatozoa and eventually male sterility. Furthermore, we find that CCDC38 interacts with intraflagellar transport protein 88 (IFT88), as well as outer dense fibrous 2 (ODF2), and the knockout of Ccdc38 reduces transport of ODF2 to the flagellum. Altogether, our results uncover the essential role of CCDC38 in sperm flagellum biogenesis, and suggest that some mutations of these genes might be associated with male infertility in humans.
Asunto(s)
Fertilidad , Infertilidad Masculina , Cola del Espermatozoide , Animales , Fertilidad/genética , Proteínas de Choque Térmico/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Masculino , Ratones , Ratones Noqueados , Cola del Espermatozoide/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismoRESUMEN
Viruses are the most ubiquitous and diverse entities in the biome. Due to the rapid growth of newly identified viruses, there is an urgent need for accurate and comprehensive virus classification, particularly for novel viruses. Here, we present PhaGCN2, which can rapidly classify the taxonomy of viral sequences at the family level and supports the visualization of the associations of all families. We evaluate the performance of PhaGCN2 and compare it with the state-of-the-art virus classification tools, such as vConTACT2, CAT and VPF-Class, using the widely accepted metrics. The results show that PhaGCN2 largely improves the precision and recall of virus classification, increases the number of classifiable virus sequences in the Global Ocean Virome dataset (v2.0) by four times and classifies more than 90% of the Gut Phage Database. PhaGCN2 makes it possible to conduct high-throughput and automatic expansion of the database of the International Committee on Taxonomy of Viruses. The source code is freely available at https://github.com/KennthShang/PhaGCN2.0.
Asunto(s)
Virus , Virus/genética , Genoma Viral , Bases de Datos Factuales , Programas Informáticos , GenómicaRESUMEN
Indole is a microbial metabolite produced by the gut microbiota through the degradation of dietary tryptophan, known for its well-established anti-inflammatory and antioxidant properties. In this study, we collected fecal samples from mice fed a high-fat diet (HFD) and those on a standard diet (SD), then conducted 16S rRNA sequencing to analyze their gut microbiota. The analysis revealed distinct differences in the dominant bacterial species between the two groups, with a significant decrease in indole-producing probiotics in the HFD mice compared to the SD group. Then we administered oral indole treatment to male C57BL/6J mice with HFD-induced NAFLD and observed a significant improvement in hepatic steatosis and inflammation. Notably, indole alleviated the HFD-induced decline in serum Angiotensin-(1-7) [Ang-(1-7)] levels and Angiotensin-Converting Enzyme 2 (ACE2) expression. To further investigate the role of indole and ACE2 in NAFLD, we conducted experiments using ACE2 knockout (ACE2KO) mice that were also induced with HFD-induced NAFLD and treated with indole. Interestingly, the protective effects of indole were compromised in the absence of ACE2. In HepG2 cells, indole similarly stimulated ACE2 expression and, in an ACE2-dependent manner, reduced ROS generation, maintained mitochondrial membrane potential stability, and increased SIRT3 expression. In summary, our results highlight the formation of a biologically active gut-liver axis between the gut microbiota and the liver through the tryptophan metabolite indole, which mitigates NAFLD in an ACE2-dependent manner. Elevating dietary tryptophan and increasing indole levels may represent an effective approach for preventing and treating NAFLD.
Asunto(s)
Enzima Convertidora de Angiotensina 2 , Dieta Alta en Grasa , Microbioma Gastrointestinal , Indoles , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Ratones , Masculino , Indoles/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Dieta Alta en Grasa/efectos adversos , Ratones Noqueados , Hígado/metabolismo , Hígado/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , Angiotensina IRESUMEN
The clinical benefit of anti-programmed cell death protein 1 (PD-1)-based immunotherapy among patients with microsatellite instable (MSI) endometrial cancer (EC) precedes that of microsatellite stable (MSS) EC, the mechanisms of which have not been fully understood. Circular RNAs (circRNAs) were reported to modulate immune evasion in several types of malignancies, while their roles in the immune regulation in EC remain largely unknown. Here, we conducted circRNA array analysis and mRNA-Sequencing of 10 MSI EC samples and 10 MSS EC samples and identified 1083 differentially expressed circRNAs (DE-circRNAs) and 864 differentially expressed mRNAs, based on which we constructed a circRNA-miRNA-mRNA comprehensive network consisting of 35 DE-circRNAs, 56 predicted miRNAs and 24 differentially expressed mRNAs. Finally, we confirmed hsa_circ_0058230 being positively correlated with CD8+ T cells infiltration, suggesting that it might take a part in anti-tumor immunity in EC.
Asunto(s)
Neoplasias Endometriales , Redes Reguladoras de Genes , MicroARNs , Inestabilidad de Microsatélites , ARN Circular , ARN Mensajero , Humanos , Femenino , ARN Circular/genética , ARN Circular/metabolismo , Neoplasias Endometriales/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Persona de Mediana Edad , Linfocitos T CD8-positivos/metabolismo , Regulación Neoplásica de la Expresión GénicaRESUMEN
Cyanobacteria are the oldest prokaryotic photoautotrophic microorganisms and have evolved complicated post-translational modification (PTM) machinery to respond to environmental stress. Lysine 2-hydroxyisobutyrylation (Khib) is a newly identified PTM that is reported to play important roles in diverse biological processes, however, its distribution and function in cyanobacteria have not been reported. Here, we performed the first systematic studies of Khib in a model cyanobacterium Synechococcus sp. strain PCC 7002 (Syn7002) using peptide prefractionation, pan-Khib antibody enrichment, and high-accuracy mass spectrometry (MS) analysis. A total of 1875 high-confidence Khib sites on 618 proteins were identified, and a large proportion of Khib sites are present on proteins in the cellular metabolism, protein synthesis, and photosynthesis pathways. Using site-directed mutagenesis and functional studies, we showed that Khib of glutaredoxin (Grx) affects the efficiency of the PS II reaction center and H2O2 resistance in Syn7002. Together, this study provides novel insights into the functions of Khib in cyanobacteria and suggests that reversible Khib may influence the stress response and photosynthesis in both cyanobacteria and plants.
Asunto(s)
Lisina , Procesamiento Proteico-Postraduccional , Synechococcus , Lisina/metabolismo , Synechococcus/metabolismo , Synechococcus/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Peróxido de Hidrógeno/metabolismo , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/genética , Mutagénesis Sitio-Dirigida , Fotosíntesis , Cianobacterias/metabolismo , Cianobacterias/genética , Espectrometría de MasasRESUMEN
Protein homeostasis is essential for cyanobacteria to maintain proper cellular function under adverse and fluctuating conditions. The AAA+ superfamily of proteolytic complexes in cyanobacteria plays a critical role in this process, including ClpXP, which comprises a hexameric ATPase ClpX and a tetradecameric peptidase ClpP. Despite the physiological effects of ClpX on growth and photosynthesis, its potential substrates and underlying mechanisms in cyanobacteria remain unknown. In this study, we employed a streptavidin-biotin affinity pull-down assay coupled with label-free proteome quantitation to analyze the interactome of ClpX in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). We identified 503 proteins as potential ClpX-binding targets, many of which had novel interactions. These ClpX-binding targets were found to be involved in various biological processes, with particular enrichment in metabolic processes and photosynthesis. Using protein-protein docking, GST pull-down, and biolayer interferometry assays, we confirmed the direct association of ClpX with the photosynthetic proteins, ferredoxin-NADP+ oxidoreductase (FNR) and phycocyanin subunit (CpcA). Subsequent functional investigations revealed that ClpX participates in the maintenance of FNR homeostasis and functionality in Synechocystis grown under different light conditions. Overall, our study provides a comprehensive understanding of the extensive functions regulated by ClpX in cyanobacteria to maintain protein homeostasis and adapt to environmental challenges.
Asunto(s)
Fotosíntesis , Synechocystis , Fotosíntesis/genética , Synechocystis/genética , Synechocystis/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Ficocianina/metabolismoRESUMEN
Asthenozoospermia characterized by decreased sperm motility is a major cause of male infertility, but the majority of the etiology remains unknown. Here, we showed that the cilia and flagella associated protein 52 (Cfap52) gene was predominantly expressed in testis and its deletion in a Cfap52 knockout mouse model resulted in decreased sperm motility and male infertility. Cfap52 knockout also led to the disorganization of the midpiece-principal piece junction of the sperm tail but had no effect on the axoneme ultrastructure in spermatozoa. Furthermore, we found that CFAP52 interacted with the cilia and flagella associated protein 45 (CFAP45) and knockout of Cfap52 decreased the expression level of CFAP45 in sperm flagellum, which further disrupted the microtubule sliding produced by dynein ATPase. Together, our studies demonstrate that CFAP52 plays an essential role in sperm motility by interacting with CFAP45 in sperm flagellum, providing insights into the potential pathogenesis of the infertility of the human CFAP52 mutations.
Asunto(s)
Cilios , Infertilidad Masculina , Animales , Humanos , Masculino , Ratones , Cilios/metabolismo , Flagelos/genética , Flagelos/metabolismo , Infertilidad Masculina/metabolismo , Ratones Noqueados , Proteínas/metabolismo , Semen , Motilidad Espermática , Cola del Espermatozoide/metabolismo , Cola del Espermatozoide/patología , Espermatozoides/metabolismoRESUMEN
The preservation of chirality during a transformation process, known as the "chiral memory" effect, has garnered significant attention across multiple research disciplines. Here, we first report the retention of the original chiral structure during dynamic covalent chemistry (DCC)-induced structural transformation from porous organic cages into covalent organic frameworks (COFs). A total of six two-dimensional chiral COFs constructed by entirely achiral building blocks were obtained through the DCC-induced substitution of chiral linkers in a homochiral cage (CC3-R or -S) using achiral amine monomers. Homochirality of these COFs resulted from the construction of 3-fold-symmetric benzene-1,3,5-methanimine cores with a propeller-like configuration of one single-handedness throughout the cage-to-COF transformation. The obtained chiral COFs can be further utilized as fluorescence sensors or chiral stationary phases for gas chromatography with high enantioselectivity. The present study thus highlighted the great potential to expand the scope of functional chiral materials via DCC-induced crystal-to-crystal transformation with the chiral memory effect.
RESUMEN
Remembering what just happened is a crucial prerequisite to form long-term memories but also for establishing and maintaining working memory. So far there is no general agreement about cortical mechanisms that support short-term memory. Using a classifier-based decoding approach, we report that hippocampal activity during few sparsely distributed brief time intervals contains information about the previous sensory motor experience of rodents. These intervals are characterized by only a small increase of firing rate of only a few neurons. These low-rate predictive patterns are present in both working memory and non-working memory tasks, in two rodent species, rats and Mongolian gerbils, are strongly reduced for rats with medial entorhinal cortex lesions, and depend on the familiarity of the sensory-motor context.
Asunto(s)
Potenciales de Acción , Gerbillinae , Hipocampo , Memoria a Corto Plazo , Animales , Hipocampo/fisiología , Masculino , Ratas , Memoria a Corto Plazo/fisiología , Potenciales de Acción/fisiología , Neuronas/fisiología , Corteza Entorrinal/fisiología , Reconocimiento en Psicología/fisiología , Conducta Animal/fisiologíaRESUMEN
Pharmacogenetics promises to optimize treatment-related outcomes by informing optimal drug selection and dosing based on an individual's genotype in conjunction with other important clinical factors. Despite significant evidence of genetic associations with drug response, pharmacogenetic testing has not been widely implemented into clinical practice. Among the barriers to broad implementation are limited guidance for how to successfully integrate testing into clinical workflows and limited data on outcomes with pharmacogenetic implementation in clinical practice. The Pharmacogenomics Global Research Network Implementation Working Group seeks to engage institutions globally that have implemented pharmacogenetic testing into clinical practice or are in the process or planning stages of implementing testing to collectively disseminate data on implementation strategies, metrics, and health-related outcomes with the use of genotype-guided drug therapy to ultimately help advance pharmacogenetic implementation. This paper describes the goals, structure, and initial projects of the group in addition to implementation priorities across sites and future collaborative opportunities.
RESUMEN
Aberrant upregulation of Periostin (POSTN) expression has been implicated in various disease-related pathological cascades, notably inflammatory responses, fibrotic processes and tumor progression, including non-small cell lung cancer (NSCLC). The present study aimed to elucidate the functional role and underlying mechanisms of POSTN in NSCLC. Immunohistochemical and Western blot analysis consistently revealed elevated POSTN levels in NSCLC tissues and cell lines. POSTN expression negatively correlated with patient prognosis. Functional experiments utilizing POSTN-targeting siRNAs demonstrated a significant suppression of NSCLC cell proliferation, epithelial-to-mesenchymal transition (EMT), migration and invasion, whereas POSTN overexpression via plasmid transfection enhanced these oncogenic properties. Mechanistically, RNA sequencing analysis and subsequent validation studies revealed that POSTN positively modulates the transcriptional expression of tumor necrosis factor alpha-induced protein 6 (TNFAIP6) in NSCLC. Notably, a positive correlation was observed between POSTN and TNFAIP6 expression levels, and their overexpression positively correlated with NSCLC progression. Furthermore, TNFAIP6 overexpression rescued the inhibitory effects of POSTN knockdown on NSCLC malignant phenotypes. Collectively, our findings indicate that POSTN promotes NSCLC malignancy through TNFAIP6 upregulation, positioning POSTN as a promising biomarker and potential therapeutic target for NSCLC prognosis and treatment strategies in clinical settings.
RESUMEN
Van der Waals heterostructures formed by stacked 2D materials show exceptional electronic, mechanical, and optical properties. Superlubricity, a condition where atomically flat, incommensurate planes of atoms result in ultra-low friction, is a prime example enabling, for example, self-assembly of optically visible graphene nanostructures in air via a sliding auto-kirigami process. Here, it is demonstrated that a subtle but ubiquitous adsorbate stripe structure found on graphene and graphitic surfaces in ambient conditions remains stable within the interface between twisted graphene layers as they slide over each other. Despite this contamination, the interface retains an exceptional superlubricious state with an estimated upper bound frictional shear strength of 10 kPa, indicating that direct atomic incommensurate contact is not required to achieve ambient superlubricity for 2D materials. The results suggest that any phenomena depending on 2D heterostructure interfaces such as exotic electronic behavior may need to consider the presence of stripe adsorbate structures that remain intercalated.
RESUMEN
The stability of aqueous zinc metal anodes is still constrained by their severe dendrite growth. Optimizing electric field distribution and crystallography to modulate the diffusion and deposition behavior of zinc ions can effectively suppress dendrite growth. However, the fabrication strategy to directly endow specific textured zinc anodes with gradient electric field distribution is still lacking. Herein, a strategy combining crystal reconstruction of commercial zinc foil with graphene oxide (GO) protective layer is proposed to construct an in situ gradient electric field-enhanced strong (002) textured GO@ZnO/Zn(002) anode. Based on the experimental and theoretical results, the GO protective layer can regulate a wide-range homogeneous Zn2+ ions flow, while the dense and uniform ZnO/Zn(002) nanoneedles /nanoparticles can enhance localized polarized electric field to accelerate rapid localized transfer of Zn2+ ions and guide them toward directional deposition along (002) plane. Therefore, the hierarchical GO@ZnO/Zn(002) anode enables the symmetric cell to operate continuously and stably for 5700 and 4200 h at 2 and 4 mA cm-2, respectively, which is comparable to or better than most high-end Zn anodes. This work presents new insights into the zinc foil reconstruction and gradient electric field fabrication strategy, offering a scalable approach for the development of long-term stable metal anodes.
RESUMEN
Immune checkpoints are essential regulators of immune responses, either by activating or suppressing them. Consequently, they are regarded as pivotal elements in the management of infections, cancer, and autoimmune disorders. In recent years, researchers have identified numerous soluble immune checkpoints that are produced through various mechanisms and demonstrated biological activity. These soluble immune checkpoints can be produced and distributed in the bloodstream and various tissues, with their roles in immune response dysregulation and autoimmunity extensively documented. This review aims to provide a thorough overview of the generation of various soluble immune checkpoints, such as sPD-1, sCTLA-4, sTim-3, s4-1BB, sBTLA, sLAG-3, sCD200, and the B7 family, and their importance as indicators for the diagnosis and prediction of autoimmune conditions. Furthermore, the review will investigate the potential pathological mechanisms of soluble immune checkpoints in autoimmune diseases, emphasizing their association with autoimmune diseases development, prognosis, and treatment.