Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Molecules ; 28(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36903502

RESUMEN

In this paper, based on high-throughput technology, polymer dispersed liquid crystals (PDLC) composed of pentaerythritol tetra (2-mercaptoacetic acid) (PETMP), trimethylolpropane triacrylate (TMPTA), and polyethylene glycol diacrylate (PEGD 600) were investigated in detail. A total of 125 PDLC samples with different ratios were quickly prepared using ink-jet printing. Based on the method of machine vision to identify the grayscale level of samples, as far as we know, it is the first time to realize high-throughput detection of the electro-optical performance of PDLC samples, which can quickly screen out the lowest saturation voltage of batch samples. Additionally, we compared the electro-optical test results of manual and high-throughput preparation PDLC samples and discovered that they had very similar electro-optical characteristics and morphologies. This demonstrated the viability of PDLC sample high-throughput preparation and detection, as well as promising application prospects, and significantly increased the efficiency of PDLC sample preparation and detection. The results of this study will contribute to the research and application of PDLC composites in the future.

2.
Sensors (Basel) ; 21(24)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34960409

RESUMEN

N,N,N',N'-Tetraoctyl diglycolamide (TODGA), as a new extraction agent, is effective for its excellent performance and low environmental hazard, and it is very welcome for the rare earth separation process. In this paper, by controlling the extraction time, diluent type, acid type and its concentration, rare earth concentration, etc., the optimum extraction and back-extraction effects of TODGA on La(III), Ce(III), Pr(III), and Nd(III) and mixed rare earths were obtained. The experiment showed that 0.10 mol·L-1 TODGA had the best extraction effect on single rare earth under the conditions of using petroleum ether as diluent, 5 mol·L-1 nitric acid, 20 min extraction time, and 0.01 mol·L-1 rare earth. In the mixed rare earth extraction, the percentage concentrations of La(III), Ce(III), Pr(III), and Nd(III) could be achieved from 21.7%, 19.9%, 30.8%, and 22.2% at the initial stage to 90.5%, 37%, 51%, and 62% after extraction, respectively, by controlling the number of back-extraction cycles and the concentrations of hydrochloric acid and nitric acid in the back-extraction system. The TODGA-rare earth carrier system showed the best back-extraction effect when the hydrochloric acid concentration was 1 mol·L-1 and the back-extraction time was 20 min. At the same time, the mixed rare earth liquid system with low initial concentration was selected for extraction and separation of mixed rare earth. The separation effect was better, and the recovery rate was higher than that of mixed rare earth liquid system with a high initial concentration.


Asunto(s)
Metales de Tierras Raras , Solventes
3.
Chemistry ; 25(13): 3272-3278, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30644595

RESUMEN

Unknown changes in the crystalline order of regular TiO2 result in the formation of black titania, which has garnered significant interest as a photocatalytic material due to the accompanying electronic changes. Herein, the nature of the lattice distortion caused by an oxygen vacancy was determined that in turn results in the formation of mid-band-gap states found in previous studies of black titania. An innovative technique is introduced using a state-of-the-art silicon drift detector, which can be used in conjunction with extended X-ray absorption fine structure (EXAFS) to measure bulk interatomic distances. Also discussed is how the energy dispersive nature of such a detector can allow for an unimpeded signal, indefinitely in energy space, thereby sidestepping the hurdles of more conventional EXAFS, which is often impeded by other absorption edges.

4.
Angew Chem Int Ed Engl ; 58(20): 6698-6702, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-30903672

RESUMEN

Thiols are prone to react with a multitude of various functional groups in high yields, which has been widely used for surface- and particle-patterning, bioorganic synthesis, polymer modification, imprint nanolithography, the fabrication of optical components, hydrogel synthesis, and the curing of hard protective coatings. In this work, a chiral thiol with a high helical twisting power was synthesized through a novel synthetic route with high selectivity, yield, and cost-effectiveness. It was then used to fabricate a liquid-crystal composite film with ultra-wide broadband reflection via thiol click chemistry. Cholesteric liquid-crystal materials with broadband reflection have many potential applications for broadband polarizers, polarizer-free displays, organic optical data storage media, smart switchable reflective windows, and continuous waveband laser protection.

5.
J Am Chem Soc ; 140(17): 5719-5727, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29644854

RESUMEN

TiO2 mesoporous crystal has been prepared by one-step corroding process via an oriented attachment (OA) mechanism with SrTiO3 as precursor. High resolution transmission electron microscopy (HRTEM) and nitrogen adsorption-desorption isotherms confirm its mesoporous crystal structure. Well-dispersed ruthenium (Ru) in the mesoporous nanocrystal TiO2 can be attained by the same process using Ru-doped precursor SrTi1- xRu xO3. Ru is doped into lattice of TiO2, which is identified by HRTEM and super energy dispersive spectrometer (super-EDS) elemental mapping. X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance spectroscopy (EPR) suggest the pentavalent Ru but not tetravalent, while partial Ti in TiO2 accept an electron from Ru and become Ti3+, which is observed for the first time. This Ru-doped TiO2 performs high activity for electrocatalytic hydrogen evolution reaction (HER) in alkaline solution. First-principles calculations simulate the HER process and prove TiO2:Ru with Ru5+ and Ti3+ holds high HER activity with appropriate hydrogen-adsorption Gibbs free energies (Δ GH).

6.
Chemistry ; 24(15): 3707-3711, 2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29356148

RESUMEN

Metal alloy nanoparticles have shown promising applications in electrocatalysis. However, the nanoparticles usually suffer from limited charge-transfer efficiency, which can be solved by preparing one-dimensional materials. Herein, Co-Ni alloy nanochains are prepared by a direct-current arc-discharge method. The nanochains, comprised of mutually coupled uniform nanospheres, can range up to several micrometers in size. When the alloy is exposed to air or under the electro-oxidation process, a metal-metal-oxide heterostructure is obtained. The alloy can inject electrons into the oxide, which makes it more suitable for electrocatalysis. The composition of the samples can be changed by varying the ratio of Ni/Co (i.e., Co, Co7 Ni3 , Co5 Ni5 , Co3 Ni7 , Ni) in the synthesis process. The nanochains show good oxygen evolution performance that correlates with the Ni/Co ratio. Co7 Ni3 demonstrates optimal activity with an onset point of 1.50 V vs. reversible hydrogen electrode (RHE) and overpotential of 350 mV at 10 mA cm-2 . The alloy nanochains also show excellent durability with 95.0 % current retention after a long-term test for 12 h.

7.
Chemistry ; 24(9): 2157-2163, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29205557

RESUMEN

The route of converting CO2 to CO by reverse water-gas shift (RWGS) reaction is of particular interest due to the direct use of CO as feedstock in many significant industrial processes. Here, an engineered cobalt-cobalt oxide core-shell catalyst (Co@CoO) with nanochains structure has been made for the efficient reduction of CO2 to useful CO. Owing to the excellent performance for H2 activation of metal nanoparticles and the enhanced absorption and activation for CO2 molecule of defective metal oxides, the unique synergistic effect of metallic Co and encapsulating coordinatively unsaturated CoO species shows high performance for clean generation of CO under moderate and practical conditions. Furthermore, with N-dopant into the defective CoO shell, the Co@CoO-N achieves the highest conversion of 19.2 % and an exceptional CO evolution rate of 96 mL min-1 gcat-1 at 523 K with a gas hourly space velocity (GHSV) of 42,000 mL gcat-1 h-1 , which is comparable with the previously reported materials under identical conditions.

8.
Research (Wash D C) ; 2020: 4178179, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33103117

RESUMEN

Aqueous supercapacitors are powerful energy sources, but they are limited by energy density that is much lower than lithium-ion batteries. Since raising the voltage beyond the thermodynamic potential for water splitting (1.23 V) can boost the energy density, there has been much effort on water-stabilizing salvation additives such as Li2SO4 that can provide an aqueous electrolyte capable of withstanding ~1.8 V. Guided by the first-principles calculations that reveal water can promote hydrogen and oxygen evolution reactions, here, we pursue a new strategy of covering the electrode with a dense electroplated polymerized polyacrylic acid, which is an electron insulator but a proton conductor and proton reservoir. The combined effect of salvation and coating expands the electrochemical window throughout pH 3 to pH 10 to 2.4 V for both fast and slow proton-mediated redox reactions. This allows activated carbon to quadruple the energy density, a kilogram of nitrogen-doped graphene to provide 127 Watt-hour, and both to have improved endurance because of suppression of water-mediated corrosion. Therefore, aqueous supercapacitors can now achieve energy densities quite comparable to that of a lithium-ion battery, but at 100 times the charging/discharging speed and cycle durability.

9.
Research (Wash D C) ; 2020: 9140841, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32426729

RESUMEN

Although single-atom catalysts significantly improve the atom utilization efficiency, the multistep preparation procedures are complicated and difficult to control. Herein, we demonstrate that one-step in situ synthesis of the single-atom Pt anchored in single-crystal MoC (Pt1/MoC) by using facile and controllable arc-discharge strategy under extreme conditions. The high temperature (up to 4000°C) provides the sufficient energy for atom dispersion and overall stability by forming thermodynamically favourable metal-support interactions. The high-temperature-stabilized Pt1/MoC exhibits outstanding performance and excellent thermal stability as durable catalyst for selective quinoline hydrogenation. The initial turnover frequency of 3710 h-1 is greater than those of previously reported samples by an order of magnitude under 2 MPa H2 at 100°C. The catalyst also shows broad scope activity toward hydrogenation containing unsaturated groups of C=C, C=N, and C=O. The facile, one-step, and fast arc-discharge method provides an effective avenue for single-atom catalyst fabrication that is conventionally challenging.

10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(7): 1522-5, 2008 Jul.
Artículo en Zh | MEDLINE | ID: mdl-18844153

RESUMEN

The hydrogen-bonded liquid crystalline complexes based on 4', 4-bipyridine and 4-(trans-4-propylcyclohexyl) benzoic acid and trans-4-(trans-4-propylcyclohexyl)cyclohexyl carboxylic acid assigned as PCBA-BPy and PCCA-BPy were prepared and measured by polarized optical microscopy (POM), differential scanning calorimeter (DSC) and temperature-dependent FTIR It was found that PCBA-BPy and PCCA-BPy exhibited both smectic and nematic phase while all of their predecessors showed no smectic phase. The temperature-dependent FTIR studies revealed that the hydrogen bonding in complex PCBA-BPy was very different from that in PCCA-BPy. The wave number of C=O band had an obvious change at the crystal 1-crystal 2 transition but almost didn't change at smectic-nematic and nematic-isotropic transition; while in PCCA-BPy, it showed no sudden changes but shift to 1 709 cm(-1) gradually with the increase in temperature. The results from temperature-dependent FTIR studies also revealed that when the temperature was higher than the clearing point of the complexes, both of the complexes decomposed partially.

11.
Adv Mater ; 30(35): e1801409, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29995328

RESUMEN

Boron, the most ideal lithium-ion battery anode material, demonstrates highest theoretical capacity up to 12 395 mA h g-1 when forming Li5 B. Furthermore, it also exhibits promising features such as light weight, considerable reserves, low cost, and nontoxicity. However, boron-based materials are not in the hotspot list because Li5 B may only exist when B is in atomically isolated/dispersed form, while the aggregate material can barely be activated to store/release Li. At this time, an ingenious design is demonstrated to activate the inert B to a high specific capacity anode material by dispersing it in a Fe matrix. The above material can be obtained after an electrochemical activation of the precursors Fe2 B/Fe and B2 O3 /Fe. The latter harvests the admirable capacity, ultrahigh tap density of 2.12 g cm-3 , excellent cycling stability of 3180 mA h cm-3 at 0.1 A g-1 (1500 mA h g-1 ) after 250 cycles, and superlative rate capability of 2650 mA h cm-3 at 0.5 A g-1 , 2544 mA h cm-3 at 1.0 A g-1 , and 1696 mA h cm-3 at 2.0 A g-1 . Highly conductive matrix promoted reversible Li storage of boron-based materials might open a new gate for advanced anode materials.

12.
ACS Appl Mater Interfaces ; 10(26): 22757-22766, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29894150

RESUMEN

In this work, a bistable polymer framework liquid crystal (PFLC) thin film by thermal curing of epoxy monomers with two different thiols, a traditional flexible-structure thiol and a novel original rigid-structure thiol, has been successfully fabricated, combining a novel mixed morphology of polymer matrix and cholesteric liquid crystals with negative dielectric anisotropy. The polymer framework morphology has been formed by curing two types of epoxy monomers with two types of thiols, and the liquid crystals tend to be focal conic textures with large size domains at the initial state in the PFLC film so that it has a moderate light transmissivity at this state between the transparent state and the opaque state. Thus, the devices based on PFLC films can be switched reversibly between the transparent state and the opaque state by alternative electric field. In addition, the states can be sustained after the electric field is removed. The bistable memory effect comes from the anchoring effects of the polymer frameworks with a novel morphology in the microdomains of the PFLCs. Therefore, the optimized bistable PFLC film keeps its initial state without external electric field and any other energy consumption for a long time after altering the state by applying an instant electric field. The special polymer frameworks in the bistable PFLC films endow the films with excellent electro-optical properties and mechanical properties. The devices are energy-efficient and cost-saving and have great potential applications in energy-efficient reflective displays, electronic papers, writing tablets, and smart windows.

13.
ACS Appl Mater Interfaces ; 10(14): 11565-11571, 2018 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-29521497

RESUMEN

Co@Co9S8 nanochains with core-shell structures are prepared by a direct-current arc-discharge technique and followed sulfurization at 200 °C. The nanochains, which consist of uniform nanospheres connecting each other, can range up to several micrometers. The thickness of Co9S8 shell can be changed by regulating the sulfurization time. In this heterostructure of Co@Co9S8, Co nanochains function as a conductive network and can inject electrons into Co9S8, which manipulates the work function of Co9S8 and makes it more apposite for catalysis. The density functional theory calculation also reveals that coupling with Co can significantly reduce the overpotential needed to drive the oxygen evolution process. On the basis of the exclusive structure, Co@Co9S8 nanochains have shown high catalytic activity in the oxygen evolution reaction. Co@Co9S8 reaches an overpotential of 285 mv at 10 mA cm-2, which is much lower than that of Co nanochains (408 mV) and Co9S8 (418 mV). Co@Co9S8 also shows higher catalytic activity and robustness compared to state-of-the-art noble-metal catalyst RuO2.

14.
Mar Pollut Bull ; 114(2): 896-902, 2017 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-27863881

RESUMEN

In this work, Erythromycin A(EA)- degrading bacteria was isolated from the contaminated soil obtained from a pharmaceutical factory in China. The isolate designated as strain WX-J1 was identified as Ochrobactrum sp. by sequence analysis of its 16S rDNA gene. It can grow in a medium containing EA as the sole source of carbon and its optimal growth pH and temperature were 6.5 and 32°C, respectively. Under these conditions, when the initial Erythromycin A concentration was 100mg·L-1, 97% of Erythromycin A has been degraded. HPLC-MS analyses indicated that Erythromycin A degradation produced intermediates contained the following three substances: 3-depyranosyloxy erythromycin A, 7,12-dyhydroxy-6-deoxyerythronolide B, 6-deoxyerythronolide B and propionaldehyde. Since Erythromycin A-degrading Ochrobactrum sp. strain rapidly degraded Erythromycin A, this strain might be useful for bioremediation purposes.


Asunto(s)
Contaminantes Ambientales/análisis , Eritromicina/análisis , Ochrobactrum/aislamiento & purificación , Microbiología del Suelo , Biodegradación Ambiental , China , ADN Ribosómico/genética , Contaminantes Ambientales/química , Contaminantes Ambientales/metabolismo , Eritromicina/química , Eritromicina/metabolismo , Estructura Molecular , Ochrobactrum/metabolismo , ARN Ribosómico 16S/genética , Temperatura
15.
Adv Mater ; 29(24)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28429506

RESUMEN

SnO2 -based lithium-ion batteries have low cost and high energy density, but their capacity fades rapidly during lithiation/delithiation due to phase aggregation and cracking. These problems can be mitigated by using highly conducting black SnO2-x , which homogenizes the redox reactions and stabilizes fine, fracture-resistant Sn precipitates in the Li2 O matrix. Such fine Sn precipitates and their ample contact with Li2 O proliferate the reversible Sn → Li x Sn → Sn → SnO2 /SnO2-x cycle during charging/discharging. SnO2-x electrode has a reversible capacity of 1340 mAh g-1 and retains 590 mAh g-1 after 100 cycles. The addition of highly conductive, well-dispersed reduced graphene oxide further stabilizes and improves its performance, allowing 950 mAh g-1 remaining after 100 cycles at 0.2 A g-1 with 700 mAh g-1 at 2.0 A g-1 . Conductivity-directed microstructure development may offer a new approach to form advanced electrodes.

16.
ACS Appl Mater Interfaces ; 8(41): 27654-27660, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27668946

RESUMEN

One-dimensional nanocrystals favoring efficient charge transfer have attracted enormous attentions, and conductive nanobelts of black titania with a unique band structure and high electrical conductivity would be interestingly used in electrocatalysis. Here, Pd nanodots supported by two kinds of black titania, the oxygen-deficient titania (TiO2-x) and nitrogen-doped titania (TiO2-x:N), were synthesized as efficient composite catalysts for oxygen-reduction reaction (ORR). These composite catalysts show improved catalytic activity with lower overpotential and higher limited current, compared to the Pd nanodots supported on the white titania (Pd/TiO2). The improved activity is attributed to the relatively high conductivity of black titania nanobelts for efficient charge transfer (CT) between Ti3+ species and Pd nanodots. The CT process enhances the strong metal-support interaction (SMSI) between Pd and TiO2, which lowers the absorption energy of O2 on Pd and makes it more suitable for oxygen reduction. Because of the stronger interaction between Pd and support, the Pd/TiO2-x:N also shows excellent durability and immunity to methanol poisoning.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda