Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nano Lett ; 24(30): 9253-9261, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39037287

RESUMEN

Ingenious microstructure construction and appropriate composition selection are effective strategies for achieving enhanced performance of photothermal materials. Herein, a broccoli-like hierarchical nickel black@graphene (Ni@Gr) membrane for solar-driven desalination was prepared by a one-step electrochemical method, which was carried out simultaneously with the electrochemical exfoliation of graphene and the co-deposition of Ni@Gr material. The bionic hierarchical structure and the chemical composition of the Ni@Gr membrane increased the sunlight absorption (90.36%) by the light-trapping effect and the introduction of graphene. The Ni@Gr membrane achieved high evaporation rates of 2.05 and 1.16 kg m-2 h-1 under simulated (1 sun) and outdoor sunlight conditions, respectively. The superhydrophilicity and the hierarchical structure of the Ni@Gr membrane jointly reduced the evaporation enthalpy (1343.6 kJ/kg), which was beneficial to break the theoretical limit of the evaporation rate (1.47 kg m-2 h-1). This work encourages the application of bionic metal-carbon composite photothermal materials in solar water evaporation.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda