Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Med Virol ; 92(12): 3563-3571, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32589758

RESUMEN

Hepatitis E virus (HEV) infects humans and more than a dozen other animal species. We previously showed that open reading frame 2 (ORF2) and ORF3 are apparently not involved in HEV cross-species infection, which infers that the ORF1 may contribute to host tropism. In this study, we utilize the genomic backbone of HEV-1 which only infects humans to construct a panel of intergenotypic chimeras in which the entire ORF1 gene or its functional domains were swapped with the corresponding regions from HEV-3 that infects both humans and pigs. We demonstrated that the chimeric HEVs were replication competent in human liver cells. Subsequently, we intrahepatically inoculated the RNA transcripts of chimeras into pigs to determine if the swapped ORF1 regions confer the chimeras' ability to infect pigs. We showed that there was no evidence of infectivity in pigs for any of the chimeras. We also investigated the role of human ribosome protein sequence S17, which expanded host range in cultured cells, in HEV cross-species infection. We demonstrated that S17 insertion in HEV ORF1 did not abolish HEV replication competency in vitro, but also did not expand HEV host tropism in vivo. The results highlight the complexity of the underlying mechanism of HEV cross-species infection.

2.
Proc Natl Acad Sci U S A ; 114(27): 6914-6923, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28630341

RESUMEN

Chronic hepatitis E virus (HEV) infection is a significant clinical problem in immunocompromised individuals such as organ transplant recipients, although the mechanism remains unknown because of the lack of an animal model. We successfully developed a pig model of chronic HEV infection and examined immune correlates leading to chronicity. The conditions of immunocompromised patients were mimicked by treating pigs with an immunosuppressive regimen including cyclosporine, azathioprine, and prednisolone. Immunocompromised pigs infected with HEV progressed to chronicity, because 8/10 drug-treated HEV-infected pigs continued fecal virus shedding beyond the acute phase of infection, whereas the majority (7/10) of mock-treated HEV-infected pigs cleared fecal viral shedding at 8 wk postinfection. During chronic infection, serum levels of the liver enzyme γ-glutamyl transferase and fecal virus shedding were significantly higher in immunocompromised HEV-infected pigs. To identify potential immune correlates of chronic infection, we determined serum levels of cytokines and cell-mediated immune responses in pigs. Results showed that HEV infection of immunocompromised pigs reduced the serum levels of Th1 cytokines IL-2 and IL-12, and Th2 cytokines IL-4 and IL-10, particularly during the acute phase of infection. Furthermore IFN-γ-specific CD4+ T-cell responses were reduced in immunocompromised pigs during the acute phase of infection, but TNF-α-specific CD8+ T-cell responses increased during the chronic phase of infection. Thus, active suppression of cell-mediated immune responses under immunocompromised conditions may facilitate the establishment of chronic HEV infection. This pig model will aid in delineating the mechanisms of chronic HEV infection and in developing effective therapeutics against chronic hepatitis E.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Virus de la Hepatitis E/inmunología , Hepatitis E/inmunología , Inmunidad Celular , Huésped Inmunocomprometido , Células TH1/inmunología , Células Th2/inmunología , Animales , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Enfermedad Crónica , Citocinas/sangre , Citocinas/inmunología , Modelos Animales de Enfermedad , Hepatitis E/sangre , Hepatitis E/inducido químicamente , Virus de la Hepatitis E/metabolismo , Humanos , Inmunosupresores/efectos adversos , Inmunosupresores/farmacología , Porcinos , Células TH1/metabolismo , Células TH1/patología , Células Th2/metabolismo , Células Th2/patología , gamma-Glutamiltransferasa/sangre , gamma-Glutamiltransferasa/inmunología
3.
J Virol ; 92(21)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30111571

RESUMEN

Hepatitis E virus (HEV), the causative agent of hepatitis E, is an important but incompletely understood pathogen causing high mortality during pregnancy and leading to chronic hepatitis in immunocompromised individuals. The underlying mechanisms leading to hepatic damage remain unknown; however, the humoral immune response is implicated. In this study, immunoglobulin (Ig) heavy chain JH-/- knockout gnotobiotic pigs were generated using CRISPR/Cas9 technology to deplete the B-lymphocyte population, resulting in an inability to generate a humoral immune response to genotype 3 HEV infection. Compared to wild-type gnotobiotic piglets, the frequencies of B lymphocytes in the Ig heavy chain JH-/- knockouts were significantly lower, despite similar levels of other innate and adaptive T-lymphocyte cell populations. The dynamic of acute HEV infection was subsequently determined in heavy chain JH-/- knockout and wild-type gnotobiotic pigs. The data showed that wild-type piglets had higher viral RNA loads in feces and sera compared to the JH-/- knockout pigs, suggesting that the Ig heavy chain JH-/- knockout in pigs actually decreased the level of HEV replication. Both HEV-infected wild-type and JH-/- knockout gnotobiotic piglets developed more pronounced lymphoplasmacytic hepatitis and hepatocellular necrosis lesions than other studies with conventional pigs. The HEV-infected JH-/- knockout pigs also had significantly enlarged livers both grossly and as a ratio of liver/body weight compared to phosphate-buffered saline-inoculated groups. This novel gnotobiotic pig model will aid in future studies into HEV pathogenicity, an aspect which has thus far been difficult to reproduce in the available animal model systems.IMPORTANCE According to the World Health Organization, approximately 20 million HEV infections occur annually, resulting in 3.3 million cases of hepatitis E and >44,000 deaths. The lack of an efficient animal model that can mimic the full-spectrum of infection outcomes hinders our ability to delineate the mechanism of HEV pathogenesis. Here, we successfully generated immunoglobulin heavy chain JH-/- knockout gnotobiotic pigs using CRISPR/Cas9 technology, established a novel JH-/- knockout and wild-type gnotobiotic pig model for HEV, and systematically determined the dynamic of acute HEV infection in gnotobiotic pigs. It was demonstrated that knockout of the Ig heavy chain in pigs decreased the level of HEV replication. Infected wild-type and JH-/- knockout gnotobiotic piglets developed more pronounced HEV-specific lesions than other studies using conventional pigs, and the infected JH-/- knockout pigs had significantly enlarged livers. The availability of this novel model will facilitate future studies of HEV pathogenicity.


Asunto(s)
Virus de la Hepatitis E/patogenicidad , Hepatitis E/patología , Hepatitis/virología , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas J de Inmunoglobulina/genética , Hígado/patología , Animales , Linfocitos B/citología , Sistemas CRISPR-Cas/genética , Modelos Animales de Enfermedad , Heces/virología , Vida Libre de Gérmenes , Hepatitis/inmunología , Inmunidad Humoral/genética , Hígado/virología , Recuento de Linfocitos , Depleción Linfocítica , ARN Viral/genética , Porcinos , Carga Viral/genética
4.
J Virol ; 92(13)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29643245

RESUMEN

Cytokines are often used as adjuvants to improve vaccine immunogenicity, since they are important in initiating and shaping the immune response. The available commercial modified live-attenuated vaccines (MLVs) against porcine reproductive and respiratory syndrome virus (PRRSV) are unable to mount sufficient heterologous protection, as they typically induce weak innate and inadequate T cell responses. In this study, we investigated the immunogenicity and vaccine efficacy of recombinant PRRSV MLVs incorporated with the porcine cytokine interleukin-15 (IL-15) or IL-18 gene fused to a glycosylphosphatidylinositol (GPI) modification signal that can anchor the cytokines to the cell membrane. We demonstrated that both cytokines were successfully expressed on the cell membrane of porcine alveolar macrophages after infection with recombinant MLVs. Pigs vaccinated with recombinant MLVs or the parental Suvaxyn MLV had significantly reduced lung lesions and viral RNA loads in the lungs after heterologous challenge with the PRRSV NADC20 strain. The recombinant MLVs SUV-IL-15 and SUV-IL-18 recovered the inhibition of the NK cell response seen with Suvaxyn MLV. The recombinant MLV SUV-IL-15 significantly increased the numbers of gamma interferon (IFN-γ)-producing cells in circulation at 49 days postvaccination (dpv), especially for IFN-γ-producing CD4- CD8+ T cells and γδ T cells, compared to the Suvaxyn MLV and SUV-IL-18. Additionally, MLV SUV-IL-15-vaccinated pigs also had elevated levels of γδ T cell responses observed at 7 dpv, 49 dpv, and 7 days postchallenge. These data demonstrate that the recombinant MLV expressing membrane-bound IL-15 enhances NK and T cell immune responses after vaccination and confers improved heterologous protection, although this was not statistically significant compared to the parental MLV.IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS) has arguably been the most economically important global swine disease, causing immense economic losses worldwide. The available commercial modified live-attenuated vaccines (MLVs) against PRRS virus (PRRSV) are generally effective against only homologous or closely related virus strains but are ineffective against heterologous strains, partially due to the insufficient immune response induced by the vaccine virus. To improve the immunogenicity of MLVs, in this study, we present a novel approach of using porcine IL-15 or IL-18 as an adjuvant by directly incorporating its encoding gene into a PRRSV MLV and expressing it as an adjuvant. Importantly, we directed the expression of the incorporated cytokines to the cell membrane surface by fusing the genes with a membrane-targeting signal from CD59. The recombinant MLV virus expressing the membrane-bound IL-15 cytokine greatly enhanced NK cell and γδ T cell responses and also conferred improved protection against heterologous challenge with the PRRSV NADC20 strain.


Asunto(s)
Adyuvantes Inmunológicos , Interleucina-15/metabolismo , Células Asesinas Naturales/inmunología , Enfermedades Pulmonares/prevención & control , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Linfocitos T/inmunología , Vacunas Virales/administración & dosificación , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Chlorocebus aethiops , Interacciones Huésped-Patógeno , Interleucina-15/inmunología , Riñón/inmunología , Riñón/virología , Células Asesinas Naturales/virología , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/virología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Porcinos , Linfocitos T/virología , Vacunación , Viremia/inmunología , Viremia/virología
5.
J Med Virol ; 91(11): 1960-1969, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31317546

RESUMEN

Hepatitis E is an important global disease, causing outbreaks of acute hepatitis in many developing countries and sporadic cases in industrialized countries. Hepatitis E virus (HEV) infection typically causes self-limiting acute hepatitis but can also progress to chronic disease in immunocompromised individuals. The immune response necessary for the prevention of chronic infection is T cell-dependent; however, the arm of cellular immunity responsible for this protection is not currently known. To investigate the contribution of humoral immunity in control of HEV infection and prevention of chronicity, we experimentally infected 20 wild-type (WT) and 18 immunoglobulin knockout (JH-KO) chickens with a chicken strain of HEV (avian HEV). Four weeks postinfection (wpi) with avian HEV, JH-KO chickens were unable to elicit anti-HEV antibody but had statistically significantly lower liver lesion scores than the WT chickens. At 16 wpi, viral RNA in fecal material and liver, and severe liver lesions were undetectable in both groups. To determine the role of cytotoxic lymphocytes in the prevention of chronicity, we infected 20 WT and 20 cyclosporine and CD8+ antibody-treated chickens with the same strain of avian HEV. The CD8 + lymphocyte-depleted, HEV-infected chickens had higher incidences of prolonged fecal viral shedding and statistically significantly higher liver lesion scores than the untreated, HEV-infected birds at 16 wpi. The results indicate that CD8 + lymphocytes are required for viral clearance and reduction of liver lesions in HEV infection while antibodies are not necessary for viral clearance but may contribute to the development of liver lesions in acute HEV infection.


Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD8-positivos/inmunología , Anticuerpos Antihepatitis/sangre , Hepatitis Viral Animal/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Infecciones por Virus ARN/veterinaria , Animales , Pollos/inmunología , Heces/virología , Técnicas de Inactivación de Genes , Hepatitis Viral Animal/inmunología , Hepevirus , Inmunidad Celular , Inmunidad Humoral , Inmunoglobulinas/genética , Hígado/patología , Hígado/virología , Depleción Linfocítica , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/prevención & control , ARN Viral/análisis , Esparcimiento de Virus
6.
J Med Virol ; 91(4): 677-686, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30318625

RESUMEN

Genotypes 3 and 4 hepatitis E virus (HEV) strains within the species Orthohepevirus A in the family Hepeviridae are zoonotic. Recently, a genotype 4 HEV was reportedly detected in fecal samples of cows, although independent confirmation is lacking. In this study, we first tested serum samples from 983 cows in different regions in the United States for the presence of immunoglobulin G (IgG) anti-HEV and found that 20.4% of cows were seropositive. The highest seroprevalence rate (68.4%) was from a herd in Georgia. In an attempt to genetically identify HEV in cattle, a prospective study was conducted in a known seropositive dairy herd by monitoring 10 newborn calves from birth to 6 months of age for evidence of HEV infection. At least 3 of the 10 calves seroconverted to IgG anti-HEV, and importantly the antibodies presented neutralized genotype 3 human HEV, thus, indicating the specificity of IgG anti-HEV in the cattle. However, our extensive attempts to identify HEV-related sequences in cattle using broad-spectrum reverse transcription-polymerase chain reaction assays and MiSeq deep-sequencing technology failed. The results suggest the existence of an agent antigenically related to HEV in cattle, although, contrary to published reports, we showed that the IgG recognizing HEV in cattle was not caused by HEV infection.


Asunto(s)
Enfermedades de los Bovinos/virología , Virus de la Hepatitis E/aislamiento & purificación , Hepatitis E/veterinaria , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Femenino , Georgia/epidemiología , Anticuerpos Antihepatitis/sangre , Hepatitis E/epidemiología , Hepatitis E/virología , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/inmunología , Inmunoglobulina G/sangre , Estudios Prospectivos , Estudios Seroepidemiológicos
7.
J Gen Virol ; 99(2): 230-239, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29300158

RESUMEN

Porcine epidemic diarrhea virus (PEDV) poses a serious threat to swine worldwide as evidenced by its recent introduction into the USA and the devastating economic impact it caused to the USA swine industry. Commercial vaccines against PEDV are available but their efficacies are inadequate. Therefore, vaccines with improved efficacy are needed to effectively control PEDV infections. We previously determined the immunogenicity of a novel dendritic cell (DC)-targeted PEDV S1 protein-based subunit vaccine in weaned piglets in which the PEDV antigen was targeted to DCs through a porcine Langerin-specific antibody. In this study, we evaluated the protective efficacy of this DC-targeting vaccine by immunizing sows at 5 and 2 weeks prior to farrowing and by challenging the 5-day-old piglets with PEDV. The results showed that immunization of sow with DC-targeted PEDV vaccine did not eliminate faecal virus shedding in piglets but significantly reduced faecal viral RNA levels in the early days after virus challenge. The vaccine also reduced the amount of PEDV antigen in intestinal tissues presented with intestinal villi regrowth. However, the DC-targeted vaccine neither mitigated PEDV clinical signs nor affected viral RNA loads in intestinal tissues of piglets. In the vaccinated sow, DC-targeted PEDV vaccine enhanced T helper 1-like cluster of differentiation (CD)4 T cell responses and induced IgG but not IgA-specific immune responses. The suckling piglets in the DC-targeted vaccine group showed increased gross pathological lesions in the small intestine. Results in this study provide insights into the effects of sow cellular immune responses to PEDV infection in suckling piglets.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Virus de la Diarrea Epidémica Porcina/inmunología , Enfermedades de los Porcinos/prevención & control , Vacunación/veterinaria , Animales , Animales Lactantes , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/virología , Células Dendríticas/virología , Femenino , Porcinos , Enfermedades de los Porcinos/patología , Enfermedades de los Porcinos/virología , Esparcimiento de Virus
8.
Biologicals ; 46: 64-67, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28100412

RESUMEN

Using viral metagenomics we analyzed four bovine serum pools assembled from 715 calves in the United States. Two parvoviruses, bovine parvovirus 2 (BPV2) and a previously uncharacterized parvovirus designated as bosavirus (BosaV), were detected in 3 and 4 pools respectively and their complete coding sequences generated. Based on NS1 protein identity, bosavirus qualifies as a member of a new species in the copiparvovirus genus. Also detected were low number of reads matching ungulate tetraparvovirus 2, bovine hepacivirus, and several papillomaviruses. This study further characterizes the diversity of viruses in calf serum with the potential to infect fetuses and through fetal bovine serum contaminate cell cultures.


Asunto(s)
Bovinos/sangre , Bovinos/virología , Genoma Viral/genética , Metagenómica/métodos , Animales , Bocavirus/clasificación , Bocavirus/genética , Proteínas de la Cápside/clasificación , Proteínas de la Cápside/genética , Geografía , Infecciones por Parvoviridae/veterinaria , Infecciones por Parvoviridae/virología , Filogenia , Análisis de Secuencia de ADN , Suero/virología , Especificidad de la Especie , Estados Unidos , Proteínas no Estructurales Virales/clasificación , Proteínas no Estructurales Virales/genética
9.
J Med Virol ; 88(9): 1641-5, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26889628

RESUMEN

Hepatitis E virus (HEV) is an important human pathogen with pigs and other species serving as natural animal reservoirs. Ample evidence documents sporadic cases of hepatitis E acquired via consumption of undercooked meat. Chronic hepatitis E cases in immunosuppressed individuals are mostly caused by zoonotic HEV of swine origin. We report here the identification of genotype 3 HEV from non-liver commercial pork from local grocery stores in southwest Virginia, and association of HEV seropositivity to the consumption of undercooked meat in healthy young adults at a university in the United States. These results raise concerns about foodborne HEV transmission in the United States. J. Med. Virol. 88:1641-1645, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Reservorios de Enfermedades/virología , Enfermedades Transmitidas por los Alimentos/virología , Hepatitis E/epidemiología , Hepatitis E/transmisión , Carne Roja/virología , Enfermedades de los Porcinos/transmisión , Adulto , Animales , Femenino , Enfermedades Transmitidas por los Alimentos/prevención & control , Genotipo , Hepatitis E/prevención & control , Hepatitis E/virología , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/inmunología , Virus de la Hepatitis E/aislamiento & purificación , Humanos , Huésped Inmunocomprometido , Masculino , Persona de Mediana Edad , Factores de Riesgo , Estudios Seroepidemiológicos , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/virología , Estados Unidos/epidemiología , Adulto Joven
10.
J Gen Virol ; 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25381057

RESUMEN

Hepatitis E virus (HEV), the causative agent of hepatitis E, is a single-stranded positive-sense RNA virus belonging to the family Hepeviridae. At least four genotypes of the family infect humans: genotypes 1 and 2 are transmitted to humans through contaminated water, while genotypes 3 and 4 are zoonotic and have animal reservoirs. A novel strain of HEV recently identified in rabbits is a distant member of genotype 3, and thus poses a potential risk of zoonotic transmission to humans. The objective of this study was to construct and characterize an infectious cDNA clone of the rabbit HEV. Two full-length cDNA clones of rabbit HEV, pT7g-rabHEV and pT7-rabHEV, were constructed and their infectivity was tested by in vitro transfection of Huh7 human liver cells and by direct intrahepatic inoculation of rabbits with capped RNA transcripts. Results showed that positive signal for rabbit HEV protein was detected by an immunofluorescence assay with a HEV-specific antibody in Huh7 human liver cells transfected with capped RNA transcripts from the two full-length cDNA clones. Rabbits intrahepatically inoculated with capped RNA transcripts from each of the two clones developed active HEV infection as evidenced by seroconversion to anti-HEV antibodies, and detection of rabbit HEV RNA in sera and feces of inoculated animals. The availability of a rabbit HEV infectious cDNA clone now affords us the ability to delineate the mechanism of HEV replication and cross-species infection in a small animal model.

12.
Viral Immunol ; 31(4): 333-337, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29489438

RESUMEN

CD137 is a costimulatory molecule transiently expressed on activated T cells after mitogen or antigen stimulation that can be exploited for isolating antigen-specific T cells as reported in mouse models. By utilizing an antiporcine CD137 monoclonal antibody (mAb, clone 3B9) developed in our laboratory, we isolated virus-specific CD8ß T cells from peripheral blood of pigs experimentally infected with different porcine reproductive and respiratory syndrome virus (PRRSV) strains. Similar to mouse, porcine CD8ß T cells also express CD137 transiently upon Concavalin A stimulation while the unstimulated cells did not. Most frequently, virus-specific CD8ß T cells were isolated at low levels from peripheral blood of pigs experimentally infected with PRRSV strains VR2385, NADC20, and MN184B at 49 and 63 days postinfection. The results suggest that porcine CD137-specific mAb is a useful tool for isolating virus-specific CD8 T cells from peripheral blood and tissues of pigs after in vitro stimulation with viral antigen.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos Virales/inmunología , Linfocitos T CD8-positivos/inmunología , Activación de Linfocitos/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología , Animales , Anticuerpos Antivirales/sangre , Línea Celular , Células HEK293 , Humanos , Síndrome Respiratorio y de la Reproducción Porcina/sangre , Síndrome Respiratorio y de la Reproducción Porcina/virología , Porcinos , Viremia/inmunología , Viremia/veterinaria , Viremia/virología
13.
Vet Microbiol ; 224: 23-30, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30269786

RESUMEN

A novel U.S. strain of mammalian orthoreovirus type 3 (MRV3) isolated from diarrheic pigs in 2015 was reportedly highly pathogenic in pigs. In this study, we first developed an inactivated MRV3 vaccine and determined its protective efficacy against MRV3 infection in conventional neonatal piglets. A pathogenicity study was also conducted in gnotobiotic pigs to further assess the pathogenicity of MRV3. To evaluate if piglets could be protected against MRV3 infection after immunization of pregnant sows with an inactivated MRV3 vaccine, pregnant sows were vaccinated with 2 or 3 doses of the vaccine or with PBS buffer. Four-day-old piglets born to vaccinated and unvaccinated sows were subsequently challenged with MRV3. The results showed that piglets born from vaccinated sows had lower levels of fecal viral RNA shedding at 1, 3, and 4 days post-challenge, suggesting that the inactivated MRV3 vaccine can reduce MRV3 replication. Surprisingly, although the conventional piglets were infected, they did not develop severe enteric disease as reported previously. Therefore, in an effort to further definitively assess the pathogenicity of MRV3, we experimentally infected gnotobiotic pigs, a more sensitive model for pathogenicity study, with the wild-type MRV3 virus. The infected gnotobiotic piglets all survived and exhibited only very mild diarrhea in some pigs. Taken together, the results indicate that the novel strain of MRV3 recently isolated in the United States infected but caused only very mild diarrhea in pigs, and that maternal immunity acquired from sows vaccinated with an inactivated vaccine can reduce MRV3 replication in neonatal pigs.


Asunto(s)
Orthoreovirus Mamífero 3/patogenicidad , Infecciones por Reoviridae/veterinaria , Enfermedades de los Porcinos/prevención & control , Vacunas de Productos Inactivados/inmunología , Vacunas Virales/inmunología , Animales , Animales Recién Nacidos , Anticuerpos Antivirales/inmunología , Diarrea/veterinaria , Diarrea/virología , Heces/virología , Femenino , Vida Libre de Gérmenes , Inmunidad Materno-Adquirida/inmunología , Inmunización/veterinaria , Embarazo , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/prevención & control , Porcinos , Enfermedades de los Porcinos/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas Virales/administración & dosificación , Virulencia
14.
Vaccine ; 35(18): 2427-2434, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28343773

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of arguably the most economically important global swine disease. The extensive genetic variation of PRRSV strains is a major obstacle for heterologous protection of current vaccines. Previously, we constructed a panel of chimeric viruses containing only the ectodomain sequences of DNA-shuffled structural genes of different PRRSV strains in the backbone of a commercial vaccine, and found that one chimeric virus had an improved cross-protection efficacy. In this present study, to further enhance the cross-protective efficacy against heterologous strains, we constructed a novel chimeric virus VR2385-S3456 containing the full-length sequences of shuffled structural genes (ORFs 3-6) from 6 heterologous PRRSV strains in the backbone of PRRSV strain VR2385. We showed that the chimeric virus VR2385-S3456 induced a high level of neutralizing antibodies in pigs against two heterologous strains. A subsequent vaccination and challenge study in 48 pigs revealed that the chimeric virus VR2385-S3456 conferred an enhanced cross-protection when challenged with heterologous virus strain NADC20 or a contemporary heterologous strain RFLP 1-7-4. The results suggest that the chimera VR2385-S3456 may be a good PRRSV vaccine candidate for further development to confer heterologous protection.


Asunto(s)
Protección Cruzada , Inmunidad Heteróloga , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Animales , Barajamiento de ADN , Genes Virales , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Porcinos , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/aislamiento & purificación , Vacunas Virales/genética , Vacunas Virales/aislamiento & purificación
15.
Virus Res ; 227: 212-219, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27784629

RESUMEN

Porcine epidemic diarrhea virus (PEDV) first emerged in the United States in 2013 causing high mortality and morbidity in neonatal piglets with immense economic losses to the swine industry. PEDV is an alpha-coronavirus replicating primarily in porcine intestinal cells. PEDV vaccines are available in Asia and Europe, and conditionally-licensed vaccines recently became available in the United States but the efficacies of these vaccines in eliminating PEDV from swine populations are questionable. In this study, the immunogenicity of a subunit vaccine based on the spike protein of PEDV, which was directly targeted to porcine dendritic cells (DCs) expressing Langerin, was assessed. The PEDV S antigen was delivered to the dendritic cells through a single-chain antibody specific to Langerin and the targeted cells were stimulated with cholera toxin adjuvant. This approach, known as "dendritic cell targeting," greatly improved PEDV S antigen-specific T cell interferon-γ responses in the CD4posCD8pos T cell compartment in pigs as early as 7days upon transdermal administration. When the vaccine protein was targeted to Langerinpos DCs systemically through intramuscular vaccination, it induced higher serum IgG and IgA responses in pigs, though these responses require a booster dose, and the magnitude of T cell responses were lower as compared to transdermal vaccination. We conclude that PEDV spike protein domains targeting Langerin-expressing dendritic cells significantly increased CD4 T cell immune responses in pigs. The results indicate that the immunogenicity of protein subunit vaccines can be greatly enhanced by direct targeting of the vaccine antigens to desirable dendritic cell subsets in pigs.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Virus de la Diarrea Epidémica Porcina/inmunología , Dominios Proteicos/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos/inmunología , Antígenos Virales/inmunología , Células CHO , Chlorocebus aethiops , Infecciones por Coronavirus/veterinaria , Cricetulus , Inmunización , Inmunoglobulina A/inmunología , Mucosa Intestinal/inmunología , Anticuerpos de Cadena Única/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Vacunas de Subunidad/inmunología , Células Vero , Vacunas Virales/inmunología
16.
Avian Dis ; 60(3): 576-88, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27610716

RESUMEN

Viral hepatitis in poultry is a complex disease syndrome caused by several viruses belonging to different families including avian hepatitis E virus (HEV), duck hepatitis B virus (DHBV), duck hepatitis A virus (DHAV-1, -2, -3), duck hepatitis virus Types 2 and 3, fowl adenoviruses (FAdV), and turkey hepatitis virus (THV). While these hepatitis viruses share the same target organ, the liver, they each possess unique clinical and biological features. In this article, we aim to review the common and unique features of major poultry hepatitis viruses in an effort to identify the knowledge gaps and aid the prevention and control of poultry viral hepatitis. Avian HEV is an Orthohepevirus B in the family Hepeviridae that naturally infects chickens and consists of three distinct genotypes worldwide. Avian HEV is associated with hepatitis-splenomegaly syndrome or big liver and spleen disease in chickens, although the majority of the infected birds are subclinical. Avihepadnaviruses in the family of Hepadnaviridae have been isolated from ducks, snow geese, white storks, grey herons, cranes, and parrots. DHBV evolved with the host as a noncytopathic form without clinical signs and rarely progressed to chronicity. The outcome for DHBV infection varies by the host's ability to elicit an immune response and is dose and age dependent in ducks, thus mimicking the pathogenesis of human hepatitis B virus (HBV) infections and providing an excellent animal model for human HBV. DHAV is a picornavirus that causes a highly contagious virus infection in ducks with up to 100% flock mortality in ducklings under 6 wk of age, while older birds remain unaffected. The high morbidity and mortality has an economic impact on intensive duck production farming. Duck hepatitis virus Types 2 and 3 are astroviruses in the family of Astroviridae with similarity phylogenetically to turkey astroviruses, implicating the potential for cross-species infections between strains. Duck astrovirus (DAstV) causes acute, fatal infections in ducklings with a rapid decline within 1-2 hr and clinical and pathologic signs virtually indistinguishable from DHAV. DAstV-1 has only been recognized in the United Kingdom and recently in China, while DAstV-2 has been reported in ducks in the United States. FAdV, the causative agent of inclusion body hepatitis, is a Group I avian adenovirus in the genus Aviadenovirus. The affected birds have a swollen, friable, and discolored liver, sometimes with necrotic or hemorrhagic foci. Histologic lesions include multifocal necrosis of hepatocytes and acute hepatitis with intranuclear inclusion bodies in the nuclei of the hepatocytes. THV is a picornavirus that is likely the causative agent of turkey viral hepatitis. Currently there are more questions than answers about THV, and the pathogenesis and clinical impacts remain largely unknown. Future research in viral hepatic diseases of poultry is warranted to develop specific diagnostic assays, identify suitable cell culture systems for virus propagation, and develop effective vaccines.


Asunto(s)
Virus de Hepatitis/fisiología , Hepatitis Viral Animal , Enfermedades de las Aves de Corral , Aves de Corral , Animales , Virus de Hepatitis/clasificación , Hepatitis Viral Animal/epidemiología , Hepatitis Viral Animal/transmisión , Hepatitis Viral Animal/virología , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/transmisión , Enfermedades de las Aves de Corral/virología
17.
Virology ; 485: 402-13, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26342466

RESUMEN

The extensive genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) strains is a major obstacle for vaccine development. We previously demonstrated that chimeric PRRSVs in which a single envelope gene (ORF3, ORF4, ORF5 or ORF6) was shuffled via DNA shuffling had an improved heterologous cross-neutralizing ability. In this study, we incorporate all of the individually-shuffled envelope genes together in different combinations into an infectious clone backbone of PRRSV MLV Fostera(®) PRRS. Five viable progeny chimeric viruses were rescued, and their growth characteristics were characterized in vitro. In a pilot pig study, two chimeric viruses (FV-SPDS-VR2,FV-SPDS-VR5) were found to induce cross-neutralizing antibodies against heterologous strains. A subsequent vaccination/challenge study in 72 pigs revealed that chimeric virus FV-SPDS-VR2 and parental virus conferred partial cross-protection when challenged with heterologous strains NADC20 or MN184B. The results have important implications for future development of an effective PRRSV vaccine that confers heterologous protection.


Asunto(s)
Protección Cruzada/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Recombinación Genética , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Orden Génico , Genoma Viral , Inmunización , Pruebas de Neutralización , Síndrome Respiratorio y de la Reproducción Porcina/patología , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus Reordenados , Porcinos , Replicación Viral
18.
ILAR J ; 55(1): 187-99, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24936039

RESUMEN

Hepatitis E virus (HEV) is a single-stranded, positive-sense RNA virus in the family Hepeviridae. Hepatitis E caused by HEV is a clinically important global disease. There are currently four well-characterized genotypes of HEV in mammalian species, although numerous novel strains of HEV likely belonging to either new genotypes or species have recently been identified from several other animal species. HEV genotypes 1 and 2 are limited to infection in humans, whereas genotypes 3 and 4 infect an expanding host range of animal species and are zoonotic to humans. Historical animal models include various species of nonhuman primates, which have been indispensable for the discovery of human HEV and for understanding its pathogenesis and course of infection. With the genetic identification and characterization of animal strains of HEV, a number of naturally occurring animal models such as swine, chicken, and rabbit have recently been developed for various aspects of HEV research, including vaccine trials, pathogenicity, cross-species infection, mechanism of virus replication, and molecular biology studies. Unfortunately, the current available animal models for HEV are still inadequate for certain aspects of HEV research. For instance, an animal model is still lacking to study the underlying mechanism of severe and fulminant hepatitis E during pregnancy. Also, an animal model that can mimic chronic HEV infection is critically needed to study the mechanism leading to chronicity in immunocompromised individuals. Genetic identification of additional novel animal strains of HEV may lead to the development of better naturally occurring animal models for HEV. This article reviews the current understanding of animal models of HEV infection in both natural and experimental infection settings and identifies key research needs and limitations.


Asunto(s)
Modelos Animales de Enfermedad , Hepatitis E/fisiopatología , Hepatitis E/veterinaria , Enfermedades de las Aves de Corral/virología , Investigación/tendencias , Enfermedades de los Porcinos/virología , Vacunas Virales/inmunología , Animales , Pollos , Femenino , Hurones , Hepatitis E/epidemiología , Virus de la Hepatitis E/genética , Humanos , Masculino , Filogenia , Enfermedades de las Aves de Corral/epidemiología , Embarazo , Prevalencia , Conejos , Ratas , Especificidad de la Especie , Porcinos , Enfermedades de los Porcinos/epidemiología , Zoonosis/virología
19.
Vaccine ; 32(50): 6768-75, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25446829

RESUMEN

Immunogenicity of protein subunit vaccines may be dramatically improved by targeting them through antibodies specific to c-type lectin receptors (CLRs) of dendritic cells in mice, cattle, and primates. This novel vaccine development approach has not yet been explored in pigs or other species largely due to the lack of key reagents. In this study, we demonstrate that porcine reproductive and respiratory syndrome virus (PRRSV) antigen was targeted efficiently to dendritic cells through antibodies specific to a porcine CLR molecule DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) in pigs. A recombinant PRRSV antigen (shGP45M) was constructed by fusing secretory-competent subunits of GP4, GP5 and M proteins derived from genetically-shuffled strains of PRRSV. In vaccinated pigs, when the PRRSV shGP45M antigen was delivered through a recombinant mouse-porcine chimeric antibody specific to the porcine DC-SIGN (pDC-SIGN) neck domain, porcine dendritic cells rapidly internalized them in vitro and induced higher numbers of antigen-specific interferon-γ producing CD4T cells compared to the pigs receiving non-targeted PRRSV shGP45M antigen. The pDC-SIGN targeting of recombinant antigen subunits may serve as an alternative or complementary strategy to existing vaccines to improve protective immunity against PRRSV by inducing efficient T cell responses.


Asunto(s)
Antígenos Virales/metabolismo , Linfocitos T CD4-Positivos/inmunología , Moléculas de Adhesión Celular/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Receptores de Superficie Celular/metabolismo , Vacunas Virales/inmunología , Animales , Antígenos Virales/genética , Moléculas de Adhesión Celular/genética , Interferón gamma/metabolismo , Lectinas Tipo C/genética , Transporte de Proteínas , Receptores de Superficie Celular/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Porcinos , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
20.
Int J Environ Res Public Health ; 10(10): 4507-33, 2013 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-24071919

RESUMEN

Hepatitis E virus (HEV) is responsible for epidemics and endemics of acute hepatitis in humans, mainly through waterborne, foodborne, and zoonotic transmission routes. HEV is a single-stranded, positive-sense RNA virus classified in the family Hepeviridae and encompasses four known Genotypes (1-4), at least two new putative genotypes of mammalian HEV, and one floating genus of avian HEV. Genotypes 1 and 2 HEVs only affect humans, while Genotypes 3 and 4 are zoonotic and responsible for sporadic and autochthonous infections in both humans and several other animal species worldwide. HEV has an ever-expanding host range and has been identified in numerous animal species. Swine serve as a reservoir species for HEV transmission to humans; however, it is likely that other animal species may also act as reservoirs. HEV poses an important public health concern with cases of the disease definitively linked to handling of infected pigs, consumption of raw and undercooked animal meats, and animal manure contamination of drinking or irrigation water. Infectious HEV has been identified in numerous sources of concern including animal feces, sewage water, inadequately-treated water, contaminated shellfish and produce, as well as animal meats. Many aspects of HEV pathogenesis, replication, and immunological responses remain unknown, as HEV is an extremely understudied but important human pathogen. This article reviews the current understanding of HEV transmission routes with emphasis on food and environmental sources and the prevalence of HEV in animal species with zoonotic potential in humans.


Asunto(s)
Microbiología de Alimentos , Virus de la Hepatitis E/fisiología , Hepatitis E/transmisión , Microbiología del Agua , Zoonosis , Animales , Hepatitis E/virología , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda